ENGINEERING PHYSICS
UNDERGRADUATE MAJOR

COVID-19-Related Degree Requirement Changes
The Engineering Physics program counts all courses taken in academic year 2020-21 with a grade of ‘CR’ (credit) or ‘S’ (satisfactory) towards satisfaction of undergraduate degree requirements that otherwise require a letter grade.

Students who take Physics 61 and 63 in the Fall and Winter quarters may take either Physics 65 in Summer 2021 or EE 65 in Spring 2021 to complete the requirement of an introductory physics sequence for the Engineering Physics major.

Engineering Physics (EPHYS)
Completion of the undergraduate program in Engineering Physics leads to the conferral of the Bachelor of Science in Engineering. The subplan “Engineering Physics” appears on the transcript and on the diploma.

Mission of the Undergraduate Program in Engineering Physics
The mission of the undergraduate program in Engineering Physics is to provide students with a strong foundation in physics and mathematics, together with engineering and problem-solving skills. All majors take high-level math and physics courses as well as engineering courses. This background prepares them to tackle complex problems in multidisciplinary areas that are at the forefront of 21st-century technology such as aerospace physics, biophysics, computational science, quantum science & engineering, materials science, nanotechnology, electromechanical systems, renewable energy, and any other engineering field that requires a solid background in physics. Because the program emphasizes science, mathematics, and engineering, students are well prepared to pursue graduate work in engineering, physics, or applied physics.

Requirements

Mathematics

<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Units</th>
</tr>
</thead>
</table>
| Select one of the following:
 MATH 51 & MATH 52 | 10 |
| CME 100 & CME 104 | |
| MATH 53 | 5 |
| or CME 102 | |
| MATH 131P | 3 |

Science

<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 41</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 42</td>
<td>1</td>
</tr>
<tr>
<td>PHYSICS 43</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 67</td>
<td>2</td>
</tr>
<tr>
<td>PHYSICS 65</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 46</td>
<td>1</td>
</tr>
</tbody>
</table>

Technology in Society
One course required; course must be on the School of Engineering Approved List, Fig 4-3 in the UGHB, the year it is taken. See Basic Requirement 4.

Engineering Fundamentals
Two courses minimum (CS 106A or B recommended; PHYSICS 105 allowed)²

Advanced Mathematics:

<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 261</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 112</td>
<td></td>
</tr>
<tr>
<td>CS 109</td>
<td></td>
</tr>
<tr>
<td>CME 106</td>
<td></td>
</tr>
<tr>
<td>CME 206/ & PHYSICS 121</td>
<td></td>
</tr>
<tr>
<td>EE 142</td>
<td></td>
</tr>
</tbody>
</table>

Also qualified are EE 263, any Math or Statistics course numbered 100 or above, and any CME course numbered 200 or above, except CME 206.

Advanced Mechanics:

<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 105</td>
<td>4</td>
</tr>
</tbody>
</table>

Intermediate Electricity and Magnetism

Select one of the following sequences:

<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 120 & PHYSICS 121</td>
<td>6-8</td>
</tr>
<tr>
<td>EE 142</td>
<td></td>
</tr>
</tbody>
</table>

Numerical Methods

Select one of the following:

<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CME 108</td>
<td>3-4</td>
</tr>
<tr>
<td>CME 206/ & ME 300C</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 113</td>
<td></td>
</tr>
</tbody>
</table>

Electronics Lab

Select one of the following:

<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 101A</td>
<td>3-5</td>
</tr>
<tr>
<td>ENGR 40M</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 104</td>
<td></td>
</tr>
<tr>
<td>PHYSICS 105</td>
<td></td>
</tr>
<tr>
<td>APPPHYS 207</td>
<td></td>
</tr>
</tbody>
</table>

Writing in the Major (WIM)

Select one of the following:

<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA 190</td>
<td>4-5</td>
</tr>
<tr>
<td>ENGR 102W</td>
<td></td>
</tr>
<tr>
<td>ENGR 199W</td>
<td></td>
</tr>
<tr>
<td>BIOE 131</td>
<td></td>
</tr>
</tbody>
</table>

Stanford Bulletin 2020-21
CS 181W Computers, Ethics, and Public Policy (for Computational Science specialty or other specialty with prereqs)
CS 182W Ethics, Public Policy, and Technological Change (for Computational Science specialty or other specialty with prereqs)
EE 134 Introduction to Photonics (for Photonics specialty only. Not offered 2019-20)
MATSCI 161 Energy Materials Laboratory (for Materials Science and Renewable Energy specialties)
MATSCI 164 Electronic and Photonic Materials and Devices Laboratory (for Materials Science and Renewable Energy specialties)
PHYSICS 107 Intermediate Physics Laboratory II: Experimental Techniques and Data Analysis (if taken 2019-20 or earlier)

Quantum Mechanics
Select one of the following sequences: 6-8
EE 222 & EE 223 Applied Quantum Mechanics I and Applied Quantum Mechanics II
PHYSICS 130 & PHYSICS 131 Quantum Mechanics I and Quantum Mechanics II

Thermodynamics and Statistical Mechanics
PHYSICS 170 & PHYSICS 171 Thermodynamics, Kinetic Theory, and Statistical Mechanics I and Thermodynamics, Kinetic Theory, and Statistical Mechanics II (or MATSCI 310 or ME 346A; may not be offered every year)

Design Course
Select one of the following: 3-4
AA 236A Spacecraft Design
CS 108 Object-Oriented Systems Design
EE 133 Analog Communications Design Laboratory
ME 103 Product Realization: Design and Making
ME 210 Introduction to Mechatronics
PHYSICS 108 Advanced Physics Laboratory: Project

Specialty Tracks
See Undergraduate Engineering Handbook for important details. 9-12
Select three courses from one specialty area:

Aerospace Physics:
AA 203 Optimal and Learning-based Control
AA 205 Rarefied and Ionized Gases
AA 244A Introduction to Plasma Physics and Engineering
AA 244B Advanced Plasma Physics and Engineering
AA 251 Introduction to the Space Environment
AA 279A Space Mechanics
ME 161 Dynamic Systems, Vibrations and Control

Biophysics:
APPPHYS 205 Introduction to Biophysics
BIO 132 Advanced Imaging Lab in Biophysics
BIO 42 Physical Biology
BIO 44 Fundamentals for Engineering Biology Lab
BIO 101 Systems Biology
BIO 103 Systems Physiology and Design
BIO 123 Bioengineering Systems Prototyping Lab
BIO 211 Biophysics of Multi-cellular Systems and Amorphous Computing
BIO 214 Representations and Algorithms for Computational Molecular Biology

BIOE 221 Physics and Engineering of Radionuclide-based Medical Imaging
EE 169 Introduction to Bioimaging
or EE 369A Medical Imaging Systems I

Computational Science:
CME 212 Advanced Software Development for Scientists and Engineers
CME 215A
CME 215B
Any CME course with course number greater than 300 and less than 390
CS 103 Mathematical Foundations of Computing
CS 154 Introduction to the Theory of Computation
CS 161 Design and Analysis of Algorithms
CS 205L Continuous Mathematical Methods with an Emphasis on Machine Learning
CS 221 Artificial Intelligence: Principles and Techniques
CS 228 Probabilistic Graphical Models: Principles and Techniques
CS 229 Machine Learning
STATS 202 Data Mining and Analysis

Electromechanical System Design:
Take two of
ME 80 Mechanics of Materials
ME 104 Mechanical Systems Design (prereqs of ME 80, ME 102, & ME 103)
CS 223A Introduction to Robotics

Take either
ME 210 Introduction to Mechatronics
or EE 118 Introduction to Mechatronics
ENGR 240 Introduction to Micro and Nano Electromechanical Systems (2020-21 only)

Materials Science:
Any MATSCI courses numbered 151 to 199 (except 159Q) or PHYSICS 172

Quantum Science & Engineering (See UGHB for further important details.)
APPPHYS 203 Atoms, Fields and Photons
APPPHYS 225 Probability and Quantum Mechanics
APPPHYS 228 Quantum Hardware
CS 254 Computational Complexity
CS 269Q Elements of Quantum Computer Programming
EE 234 Photonics Laboratory
EE 236C Lasers
EE 243 Semiconductor Optoelectronic Devices
EE 340 Optical Micro- and Nano-Cavities
PHYSICS 106 Experimental Methods in Quantum Physics
PHYSICS 134 Advanced Topics in Quantum Mechanics
PHYSICS 182 Quantum Gases
PHYSICS 230 Graduate Quantum Mechanics I
PHYSICS 231 Graduate Quantum Mechanics II
STATS 376A Information Theory

Renewable Energy:
CEE 176B 100% Clean, Renewable Energy and Storage for Everything
EE 153 Power Electronics
EE 155 Green Electronics
Requirements and Timeline for Honors in Engineering Physics:

1. Declare the honors program in Axess (ENGR-BSH, Subplan: Engineering Physics)
2. Obtain application form from the student services officer.
3. Apply to honors program by November 1 in the Autumn Quarter of the senior year.
4. Maintain an overall GPA of at least 3.5.
5. Optional: Under direction of the thesis adviser, students may enroll for research units in ENGR 199W Writing of Original Research for Engineers or in departmental courses such as AA 190 Directed Research and Writing in Aero/Astro or ME 191H Honors Research.
6. Submit a completed thesis draft to the research adviser and second reader by April 15.
7. Present the thesis work in an oral presentation or poster session in an appropriate forum (e.g., an event that showcases undergraduate research and is organized by the department of the adviser, the school of the adviser, or the University).
8. Incorporate feedback, which the adviser and second reader should provide by April 30, and obtain final endorsement signatures from the thesis adviser and second reader by May 15.
9. Submit a pdf of the thesis, including the signature page signed by both readers, to the student services officer by May 15. Students are sent email instructions on how to archive a permanent electronic copy in Terman Engineering library.

For additional information and sample programs see the Handbook for Undergraduate Engineering Programs (UGHB) (http://ughb.stanford.edu).

Honors Program

The School of Engineering offers a program leading to a Bachelor of Science in Engineering: Engineering Physics with Honors.

Honors Criteria

1. Minimum overall GPA of 3.5.
2. Independent research conducted at an advanced level with a faculty research adviser and documented in an honors thesis. The honors candidate must identify a faculty member who will serve as his or her honors research adviser and a second reader who will be asked to read the thesis and give feedback before endorsing the thesis. One of the two must be a member of the Academic Council and in the School of Engineering.

Application: The deadline to apply is November 1 in Autumn Quarter of the senior year. The application documents should be submitted to the Student Services Officer. Applications are reviewed by a subcommittee of the faculty advisers for Engineering Physics majors. Applicants and thesis advisers receive written notification when the application is approved. An application consists of three items:

1. One-page description of the research topic
2. The Honors Application form is available on Engineering Physics (https://ughb.stanford.edu/majors-minors/major-programs/engineering-physics-program/) page of the Undergraduate handbook. It must be signed by honors thesis adviser.
3. Unofficial Stanford transcript