ENGINEERING PHYSICS
UNDERGRADUATE MAJOR

Engineering Physics (EPHY)
Completion of the undergraduate program in Engineering Physics leads
to the conferral of the Bachelor of Science in Engineering. The subplan
"Engineering Physics" appears on the transcript and on the diploma.

Mission of the Undergraduate Program in Engineering Physics
The mission of the undergraduate program in Engineering Physics
is to provide students with a strong foundation in physics and
mathematics, together with engineering and problem-solving
skills. All majors take high-level math and physics courses as well
as engineering courses. This background prepares them to tackle
complex problems in multidisciplinary areas that are at the forefront
of 21st-century technology such as aerospace physics, biophysics,
computational science, quantum science & engineering, materials
science, nanotechnology, electromechanical systems, renewable energy,
and any other engineering field that requires a solid background in
physics. Because the program emphasizes science, mathematics, and
engineering, students are well prepared to pursue graduate work in engineering, physics, or applied physics.

Requirements

Mathematics
Select one of the following sequences:

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 51 & MATH 52 Linear Algebra, Multivariable Calculus, and Modern Applications and Integral Calculus of Several Variables 10</td>
</tr>
<tr>
<td>MATH 53 Ordinary Differential Equations with Linear Algebra 5</td>
</tr>
<tr>
<td>MATH 102 Ordinary Differential Equations for Engineers 5</td>
</tr>
<tr>
<td>MATH 131P Partial Differential Equations (or MATH 173 or MATH 220 or PHYSICS 111) 3</td>
</tr>
</tbody>
</table>

Science

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 41 Mechanics (or PHYSICS 61) 4</td>
</tr>
<tr>
<td>PHYSICS 42 Classical Mechanics Laboratory (or PHYSICS 62) 1</td>
</tr>
<tr>
<td>PHYSICS 43 Electricity and Magnetism (or PHYSICS 63) 4</td>
</tr>
<tr>
<td>PHYSICS 67 Introduction to Laboratory Physics 2</td>
</tr>
<tr>
<td>PHYSICS 45 Light and Heat (or PHYSICS 65) 4</td>
</tr>
<tr>
<td>PHYSICS 46 Light and Heat Laboratory (or PHYSICS 67) 1</td>
</tr>
<tr>
<td>PHYSICS 70 Foundations of Modern Physics (if taking the 40 series) 4</td>
</tr>
</tbody>
</table>

Technology in Society

One course required; must be on the School of Engineering Approved List, Fig 4-3 in the UGHB, the year it is taken. See Basic Requirement 4.

Engineering Fundamentals

Two courses minimum (CS 106A or AX or X recommended) 2 6-10

Engineering Physics Depth (core)

Advanced Mathematics:

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 261 The Fourier Transform and Its Applications 3-5</td>
</tr>
<tr>
<td>PHYSICS 112 Mathematical Methods for Physics</td>
</tr>
</tbody>
</table>

Electronics Lab

Select one of the following:

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 109 Introduction to Probability for Computer Scientists</td>
</tr>
<tr>
<td>CME 106 Introduction to Probability and Statistics for Engineers</td>
</tr>
<tr>
<td>Also qualified are EE 263, any Math or Statistics course numbered 100 or above, and any CME course numbered 200 or above, except CME 206.</td>
</tr>
</tbody>
</table>

Advanced Mechanics:

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA 242A Classical Dynamics (or ME 333 or PHYSICS 110) 3</td>
</tr>
<tr>
<td>Intermediate Electricity and Magnetism 6-8</td>
</tr>
</tbody>
</table>

Select one of the following sequences:

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 120 Intermediate Electricity and Magnetism I</td>
</tr>
<tr>
<td>PHYSICS 121 Intermediate Electricity and Magnetism II</td>
</tr>
<tr>
<td>EE 142 & EE 242 Engineering Electromagnetics and Electromagnetic Waves</td>
</tr>
</tbody>
</table>

Numerical Methods

Select one of the following:

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CME 108 Introduction to Scientific Computing 3-4</td>
</tr>
<tr>
<td>CME 206/ME 300C Introduction to Numerical Methods for Engineering</td>
</tr>
<tr>
<td>PHYSICS 113 Computational Physics</td>
</tr>
</tbody>
</table>

Writing in the Major (WIM)

Select one of the following:

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA 190 Directed Research and Writing in Aero/Astro (for Aerospace specialty only) 4-5</td>
</tr>
<tr>
<td>ENGR 199W Writing of Original Research for Engineers (for students pursuing an independent research project)</td>
</tr>
<tr>
<td>BIE 131 Ethics in Bioengineering (for Biophysics specialty only)</td>
</tr>
<tr>
<td>CS 181W Computers, Ethics, and Public Policy (for Computational Science specialty or other specialty with prereqs)</td>
</tr>
<tr>
<td>CS 182W Ethics, Public Policy, and Technological Change (for Computational Science specialty or other specialty with prereqs)</td>
</tr>
<tr>
<td>EE 134 Introduction to Photonics (for Photonics specialty only. Not offered 2019-20)</td>
</tr>
<tr>
<td>MATSCI 161 Energy Materials Laboratory (for Materials Science and Renewable Energy specialties)</td>
</tr>
<tr>
<td>MATSCI 164 Electronic and Photonic Materials and Devices Laboratory (for Materials Science and Renewable Energy specialties)</td>
</tr>
<tr>
<td>PHYSICS 107 Intermediate Physics Laboratory II: Experimental Techniques and Data Analysis (for Quantum Science & Engineering or other specialty)</td>
</tr>
</tbody>
</table>
EE 222 & EE 223
Applied Quantum Mechanics I
and Applied Quantum Mechanics II

PHYSICS 130 & PHYSICS 131
Quantum Mechanics I
and Quantum Mechanics II

Thermodynamics and Statistical Mechanics

PHYSICS 170 & PHYSICS 171
Thermodynamics, Kinetic Theory, and
Statistical Mechanics I
and Thermodynamics, Kinetic Theory, and
Statistical Mechanics II
or ME 346A
Introduction to Statistical Mechanics

Design Course
Select one of the following:

AA 236A
Spacecraft Design

CS 108
Object-Oriented Systems Design

EE 133
Analog Communications Design Laboratory

ME 203
Design and Manufacturing

ME 210
Introduction to Mechatronics

PHYSICS 108
Advanced Physics Laboratory: Project

Speciality Tracks
See Undergraduate Engineering Handbook for important details.
Select three courses from one specialty area:

Aerospace Physics:

AA 203
Optimal and Learning-based Control

AA 244A
Introduction to Plasma Physics and
Engineering

AA 251
Introduction to the Space Environment

AA 279A
Space Mechanics

ME 161
Dynamic Systems, Vibrations and Control

Biophysics:

APPHPHYS 205
Introduction to Biophysics

BIO 132
Advanced Imaging Lab in Biophysics

BIOE 42
Physical Biology

BIOE 44
Fundamentals for Engineering Biology Lab

BIOE 101
Systems Biology

BIOE 103
Systems Physiology and Design

BIOE 123
Biomedical System Prototyping Lab

BIOE 211
Biophysics of Multi-cellular Systems and
Amorphous Computing

BIOE 214
Representations and Algorithms for
Computational Molecular Biology

Computational Science:

CME 212
Advanced Software Development for
Scientists and Engineers

CME 215A
Advanced Computational Fluid Dynamics

CME 215B
Advanced Computational Fluid Dynamics

Any CME course with course number greater than 300 and less
than 390

CS 103
Mathematical Foundations of Computing

CS 154
Introduction to Automata and Complexity
Theory

CS 161
Design and Analysis of Algorithms

CS 205L
Continuous Mathematical Methods with an
Emphasis on Machine Learning

CS 221
Artificial Intelligence: Principles and
Techniques

CS 228
Probabilistic Graphical Models: Principles
and Techniques

CS 229
Machine Learning

STATS 202
Data Mining and Analysis

STATS 213
Introduction to Graphical Models

Electromechanical System Design:

ME 104
Mechanical Systems Design (formerly ME
112)

ME 80
Mechanics of Materials

ME 210
Introduction to Mechatronics
or EE 118
Introduction to Mechatronics

Materials Science:
Any MATSCI courses numbered 151 to 199 (except 159Q) or
PHYSICS 172

Quantum Science & Engineering

APPHPHYS 203
Atoms, Fields and Photons

APPHPHYS 225
Probability and Quantum Mechanics

CS 254
Computational Complexity

CS 269Q
Elements of Quantum Computer
Programming

EE 234
Photonics Laboratory

EE 236C
Lasers

EE 243
Semiconductor Optoelectronic Devices

EE 340
Optical Micro- and Nano-Cavities

PHYSICS 134
Advanced Topics in Quantum Mechanics

PHYSICS 182
Quantum Gases

PHYSICS 230
Graduate Quantum Mechanics I

PHYSICS 231
Graduate Quantum Mechanics II

Renewable Energy:

CEE 176B
100% Clean, Renewable Energy and
Storage for Everything

EE 153
Power Electronics

EE 155
Green Electronics

EE 293B
Fundamentals of Energy Processes

MATSCI 156
Solar Cells, Fuel Cells, and Batteries:
Materials for the Energy Solution

MATSCI 302
Solar Cells

MATSCI 316
Nanoscale Science, Engineering, and
Technology

ME 260
Fuel Cell Science and Technology

EE 169
Introduction to Bioimaging

or EE 369A
Medical Imaging Systems I

Total Units

93-119

1
PHYSICS 67 Introduction to Laboratory Physics (2 units),
recommended in place of PHYSICS 44 Electricity and Magnetism Lab

2
The Engineering Fundamental courses are to be selected from the
Basic Requirements 3 list. Fundamentals courses acceptable for
the core program may also be used to satisfy the fundamentals
requirement as long as 45 unduplicated units of Engineering are
taken.

3
Although not required, PHYSICS 59
(https://explorecourses.stanford.edu/
search?view=catalog&filter-coursestatus-
Active=on&page=0&catalog=&academicYear=&q=physics59&collapse=)
(Frontiers in Physics Research, 1 unit) and PHYSICS
91SI (https://explorecourses.stanford.edu/
search?view=catalog&filter-coursestatus-
Active=on&page=0&catalog=&academicYear=&q=physics91si&collapse=)
(Practical Computing for Scientists, 2 units) are highly
recommended.
A course may only be counted towards one requirement; it may not be double-counted. All courses taken for the major must be taken for a letter grade if that option is offered by the instructor. Minimum Combined GPA for all courses in Engineering Fundamentals and Depth is 2.0.

For additional information and sample programs see the Handbook for Undergraduate Engineering Programs (UGHB) (http://ughb.stanford.edu).

Honors Program

The School of Engineering offers a program leading to a Bachelor of Science in Engineering: Engineering Physics with Honors.

Honors Criteria

1. Minimum overall GPA of 3.5.
2. Independent research conducted at an advanced level with a faculty research adviser and documented in an honors thesis. The honors candidate must identify a faculty member who will serve as his or her honors research adviser and a second reader who will be asked to read the thesis and give feedback before endorsing the thesis. One of the two must be a member of the Academic Council and in the School of Engineering.

Application: The deadline to apply is November 1 in Autumn Quarter of the senior year. The application documents should be submitted to the Student Services Officer. Applications are reviewed by a subcommittee of the faculty advisers for Engineering Physics majors. Applicants and thesis advisers receive written notification when the application is approved. An application consists of three items:

 1. One-page description of the research topic
 2. The Honors Application form is available on Engineering Physics (https://ughb.stanford.edu/majors-minors/major-programs/engineering-physics-program) page of the Undergraduate handbook. It must be signed by honors thesis adviser.
 3. Unofficial Stanford transcript

Requirements and Timeline for Honors in Engineering Physics:

1. Declare the honors program in Axess (ENGR-BSH, Subplan: Engineering Physics)
2. Obtain application form from the student services officer.
3. Apply to honors program by November 1 in the Autumn Quarter of the senior year.
4. Maintain an overall GPA of at least 3.5.
5. Optional: Under direction of the thesis adviser, students may enroll for research units in ENGR 199W Writing of Original Research for Engineers or in departmental courses such as AA 190 Directed Research and Writing in Aero/Astro or ME 191H Honors Research.
6. Submit a completed thesis draft to the research adviser and second reader by April 15.
7. Present the thesis work in an oral presentation or poster session in an appropriate forum (e.g., an event that showcases undergraduate research and is organized by the department of the adviser, the school of the adviser, or the University).
8. Incorporate feedback, which the adviser and second reader should provide by April 30, and obtain final endorsement signatures from the thesis adviser and second reader by May 15.
9. Submit a pdf of the thesis, including the signature page signed by both readers, to the student services officer by May 15. Students are sent email instructions on how to archive a permanent electronic copy in Terman Engineering library.