ENGINEERING PHYSICS UNDERGRADUATE MAJOR

Engineering Physics (EPHYS)

Completion of the undergraduate program in Engineering Physics leads to the conferral of the Bachelor of Science in Engineering. The subplan “Engineering Physics” appears on the transcript and on the diploma.

Mission of the Undergraduate Program in Engineering Physics

The mission of the undergraduate program in Engineering Physics is to provide students with a strong foundation in physics and mathematics, together with engineering and problem-solving skills. All majors take high-level math and physics courses as well as engineering courses. This background prepares them to tackle complex problems in multidisciplinary areas that are at the forefront of 21st-century technology such as aerospace physics, biophysics, computational science, quantum science & engineering, materials science, nanotechnology, electromechanical systems, renewable energy, and any other engineering field that requires a solid background in physics. Because the program emphasizes science, mathematics, and engineering, students are well prepared to pursue graduate work in engineering, physics, or applied physics.

Requirements

Mathematics

Select one of the following sequences:

<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 51 & MATH 52</td>
<td>10</td>
</tr>
<tr>
<td>CME 100 & CME 104</td>
<td>5</td>
</tr>
<tr>
<td>MATH 131P</td>
<td>3</td>
</tr>
</tbody>
</table>

Science

<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 41 mechanics</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 42 Classical Mechanics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PHYSICS 43 Electricity and Magnetism</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 45 Light and Heat</td>
<td>2</td>
</tr>
<tr>
<td>PHYSICS 46 Light and Heat Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 70 Foundations of Modern Physics</td>
<td>1</td>
</tr>
</tbody>
</table>

Technology in Society

<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATSCI 161 Energy Materials Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>MATSCI 164 Electronic and Photonic Materials and Devices Laboratory</td>
<td>4</td>
</tr>
</tbody>
</table>

Engineering Fundamentals

<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 40A Introductory Electronics and Introductory Electronics Part II</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 101B Circuits II</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 105 Intermediate Physics Laboratory I: Analog Electronics</td>
<td>1</td>
</tr>
<tr>
<td>APPPHYS 207 Laboratory Electronics</td>
<td>4</td>
</tr>
</tbody>
</table>

Writing in the Major (WIM)

<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA 190 Directed Research and Writing in Aero/</td>
<td>5</td>
</tr>
<tr>
<td>CS 181W Computers, Ethics, and Public Policy (for Computational Science specialty or other specialty with prereqs)</td>
<td>5</td>
</tr>
<tr>
<td>CS 182W Ethics, Public Policy, and Technological Change (for Computational Science specialty or other specialty with prereqs)</td>
<td>5</td>
</tr>
<tr>
<td>EE 134 Introduction to Photonics (for Photonics specialty only. Not offered 2019-20)</td>
<td>5</td>
</tr>
<tr>
<td>MATSCI 161 Energy Materials Laboratory (for Materials Science and Renewable Energy specialties)</td>
<td>5</td>
</tr>
<tr>
<td>MATSCI 164 Electronic and Photonic Materials and Devices Laboratory (for Materials Science and Renewable Energy specialties)</td>
<td>5</td>
</tr>
<tr>
<td>PHYSICS 107 Intermediate Physics Laboratory II: Experimental Techniques and Data Analysis (for Quantum Science & Engineering or other specialty)</td>
<td>5</td>
</tr>
</tbody>
</table>

Electronics Lab

Select one of the following:

<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 40A Introductory Electronics and Introductory Electronics Part II</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 101B Circuits II</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 105 Intermediate Physics Laboratory I: Analog Electronics</td>
<td>1</td>
</tr>
<tr>
<td>APPPHYS 207 Laboratory Electronics</td>
<td>4</td>
</tr>
</tbody>
</table>

Quantum Mechanics

Select one of the following sequences:

<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 109 Introduction to Probability for Computer Scientists</td>
<td>3</td>
</tr>
<tr>
<td>CME 106 Introduction to Probability and Statistics for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>Also qualified are EE 263, any Math or Statistics course numbered 100 or above, and any CME course numbered 200 or above, except CME 206.</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Mechanics:</td>
<td>4</td>
</tr>
<tr>
<td>CME 108 Introduction to Scientific Computing</td>
<td>3</td>
</tr>
<tr>
<td>CME 205/ME 300C Engineering</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 113 Computational Physics</td>
<td>3</td>
</tr>
</tbody>
</table>

Advanced Mathematics:

<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 261 The Fourier Transform and Its Applications</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS 112 Mathematical Methods for Physics</td>
<td>5</td>
</tr>
</tbody>
</table>

Stanford Bulletin 2018-19
EE 222 & EE 223
Applied Quantum Mechanics I and Applied Quantum Mechanics II

PHYSICS 130 & PHYSICS 131
Quantum Mechanics I and Quantum Mechanics II

Thermodynamics and Statistical Mechanics

PHYSICS 170 & PHYSICS 171
Thermodynamics, Kinetic Theory, and Statistical Mechanics I and Thermodynamics, Kinetic Theory, and Statistical Mechanics II 3-8

or ME 346A
Introduction to Statistical Mechanics

Design Course

Select one of the following: 3-4

AA 236A
Spacecraft Design
CS 108
Object-Oriented Systems Design
EE 133
Analog Communications Design Laboratory
ME 203
Design and Manufacturing
ME 210
Introduction to Mechatronics
PHYSICS 108
Advanced Physics Laboratory: Project

Specialty Tracks

See Undergraduate Engineering Handbook for important details. 9-12

Select three courses from one specialty area:

Aerospace Physics:

AA 203
Optimal and Learning-based Control
AA 244A
Introduction to Plasma Physics and Engineering
AA 251
Introduction to the Space Environment
AA 279A
Space Mechanics
ME 161
Dynamic Systems, Vibrations and Control

Biophysics:

APPPHYS 205
Introduction to Biophysics
BIO 132
Advanced Imaging Lab in Biophysics
BIOE 42
Physical Biology
BIOE 44
Fundamentals for Engineering Biology Lab
BIOE 101
Systems Biology
BIOE 103
Systems Physiology and Design
BIOE 123
Biomedical System Prototyping Lab
BIOE 211
Biophysics of Multi-cellular Systems and Amorphous Computing
BIOE 214
Representations and Algorithms for Computational Molecular Biology

Computational Science:

CME 212
Advanced Software Development for Scientists and Engineers
CME 215A
Advanced Computational Fluid Dynamics
CME 215B
Advanced Computational Fluid Dynamics
Any CME course with course number greater than 300 and less than 390

CS 103
Mathematical Foundations of Computing
CS 154
Introduction to Automata and Complexity Theory
CS 161
Design and Analysis of Algorithms
CS 205L
Continuous Mathematical Methods with an Emphasis on Machine Learning
CS 221
Artificial Intelligence: Principles and Techniques
CS 228
Probabilistic Graphical Models: Principles and Techniques
CS 229
Machine Learning
STATS 202
Data Mining and Analysis

STATS 213
Introduction to Graphical Models

Electromechanical System Design:

ME 104
Mechanical Systems Design (formerly ME 112)
ME 80
Mechanics of Materials
ME 210
Introduction to Mechatronics
or EE 118
Introduction to Mechatronics

Materials Science:

Any MATSCI courses numbered 151 to 199 (except 159Q) or PHYSICS 172

Quantum Science & Engineering

APPPHYS 203
Atoms, Fields and Photons
APPPHYS 225
Probability and Quantum Mechanics
CS 254
Computational Complexity
CS 269Q
Elements of Quantum Computer Programming
EE 234
Photonics Laboratory
EE 236C
Lasers
EE 243
Semiconductor Optoelectronic Devices
EE 340
Optical Micro- and Nano-Cavities
PHYSICS 134
Advanced Topics in Quantum Mechanics
PHYSICS 182
Quantum Gases
PHYSICS 230
Graduate Quantum Mechanics I
PHYSICS 231
Graduate Quantum Mechanics II

Renewable Energy:

CEE 176B
100% Clean, Renewable Energy and Storage for Everything
EE 153
Power Electronics
EE 155
Green Electronics
EE 293B
Fundamentals of Energy Processes
MATSCI 156
Solar Cells, Fuel Cells, and Batteries: Materials for the Energy Solution
MATSCI 302
Solar Cells
MATSCI 316
Nanoscale Science, Engineering, and Technology
ME 260
Fuel Cell Science and Technology
EE 169
Introduction to Bioimaging
or EE 369A
Medical Imaging Systems I

Total Units
93-119

1
PHYSICS 67 Introduction to Laboratory Physics (2 units), recommended in place of PHYSICS 44 Electricity and Magnetism Lab

2
The Engineering Fundamental courses are to be selected from the Basic Requirements 3 list. Fundamentals courses acceptable for the core program may also be used to satisfy the fundamentals requirement as long as 45 unduplicated units of Engineering are taken.

3
Although not required, PHYSICS 59 (https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&catalog=&academicYear=&q=physics59&collapse=) (Frontiers in Physics Research, 1 unit) and PHYSICS 91SI (https://explorecourses.stanford.edu/search?view=catalog&filter-coursestatus-Active=on&page=0&catalog=&academicYear=&q=physics91si&collapse=) (Practical Computing for Scientists, 2 units) are highly recommended.
A course may only be counted towards one requirement; it may not be double-counted. All courses taken for the major must be taken for a letter grade if that option is offered by the instructor. Minimum Combined GPA for all courses in Engineering Fundamentals and Depth is 2.0.

For additional information and sample programs see the Handbook for Undergraduate Engineering Programs (UGHB) (http://ughb.stanford.edu).

Honors Program

The School of Engineering offers a program leading to a Bachelor of Science in Engineering: Engineering Physics with Honors.

Honors Criteria

1. Minimum overall GPA of 3.5.
2. Independent research conducted at an advanced level with a faculty research adviser and documented in an honors thesis. The honors candidate must identify a faculty member who will serve as his or her honors research adviser and a second reader who will be asked to read the thesis and give feedback before endorsing the thesis. One of the two must be a member of the Academic Council and in the School of Engineering.

Application: The deadline to apply is November 1 in Autumn Quarter of the senior year. The application documents should be submitted to the Student Services Officer. Applications are reviewed by a subcommittee of the faculty advisers for Engineering Physics majors. Applicants and thesis advisers receive written notification when the application is approved. An application consists of three items:

1. One-page description of the research topic
2. The Honors Application form is available on Engineering Physics (https://ughb.stanford.edu/majors-minors/major-programs/engineering-physics-program) page of the Undergraduate handbook. It must be signed by honors thesis adviser.
3. Unofficial Stanford transcript

Requirements and Timeline for Honors in Engineering Physics:

1. Declare the honors program in Axess (ENGR-BSH, Subplan: Engineering Physics)
2. Obtain application form from the student services officer.
3. Apply to honors program by November 1 in the Autumn Quarter of the senior year.
4. Maintain an overall GPA of at least 3.5.
5. Optional: Under direction of the thesis adviser, students may enroll for research units in ENGR 199W Writing of Original Research for Engineers or in departmental courses such as AA 190 Directed Research and Writing in Aero/Astro or ME 191H Honors Research.
6. Submit a completed thesis draft to the research adviser and second reader by April 15.
7. Present the thesis work in an oral presentation or poster session in an appropriate forum (e.g., an event that showcases undergraduate research and is organized by the department of the adviser, the school of the adviser, or the University).
8. Incorporate feedback, which the adviser and second reader should provide by April 30, and obtain final endorsement signatures from the thesis adviser and second reader by May 15.
9. Submit a pdf of the thesis, including the signature page signed by both readers, to the student services officer by May 15. Students are sent email instructions on how to archive a permanent electronic copy in Terman Engineering library.