ATMOSPHERE/ENERGY UNDERGRADUATE MAJOR

COVID-19-Related Degree Requirement Changes
For information on how Atmosphere/Energy (A/E) degree requirements have been affected by the pandemic, see the 'COVID-19 Policies tab (http://explorerdegrees.stanford.edu/schoolofengineering/civilandenvironmentalengineering/#covid19policies/text)' in the 'Civil and Environmental Engineering' of this bulletin. For University-wide policy changes related to the pandemic, see the 'COVID-19 and Academic Continuity (http://explorerdegrees.stanford.edu/covid-19-policy-changes/)' section of this bulletin.

Atmosphere/Energy (A/E)
Completion of the undergraduate program in Atmosphere/Energy leads to the conferral of the Bachelor of Science in Engineering. The subplan 'Atmosphere/Energy' appears on the transcript and on the diploma.

Mission of the Undergraduate Program in Atmosphere/Energy
Atmosphere and energy are strongly linked: fossil-fuel energy use contributes to air pollution, global warming, and weather modification; and changes in the atmosphere feed back to renewable energy resources, including wind, solar, hydroelectric, and wave resources. The mission of the undergraduate program in Atmosphere/Energy (A/E) is to provide students with the fundamental background necessary to understand large- and local-scale climate, air pollution, energy problems and solve them through clean, renewable, and efficient energy systems. To accomplish this goal, students learn in detail the causes and proposed solutions to the problems, and learn to evaluate whether the proposed solutions are truly beneficial. A/E students take courses in renewable energy resources, indoor and outdoor air pollution, energy efficient buildings, climate change, renewable energy and clean-vehicle technologies, weather and storm systems, energy technologies in developing countries, electric grids, and air quality management. The curriculum is flexible. Depending upon their area of interest, students may take in-depth courses in energy or atmosphere and focus either on science, technology, or policy. The major is designed to provide students with excellent preparation for careers in industry, government, and research; and for study in graduate school.

Requirements
Mathematics and Science (45 units minimum):

Mathematics
23 units minimum, including at least one course from each group:

Group A
MATH 53 Ordinary Differential Equations with Linear Algebra
CME 102 Ordinary Differential Equations for Engineers

Group B
CME 106 Introduction to Probability and Statistics for Engineers
STATS 60 Introduction to Statistical Methods: Precalculus
STATS 101 Data Science 101
STATS 110 Statistical Methods in Engineering and the Physical Sciences

Science
20 units minimum, including all of the following:

PHYSICS 41 Mechanics
PHYSICS 43 Electricity and Magnetism
or PHYSICS 45 Light and Heat
CHEM 31B Chemical Principles II
or CHEM 31M Chemical Principles: From Molecules to Solids
CEE 70 Environmental Science and Technology

Technology in Society (1 course) 3-5
One 3-5 unit course required; must be on School of Engineering Approved List the year taken.

Writing in the Major (WIM)
One 3-5 unit course required. Choose a TiS course that fulfills a WIM:

BIOE 131 Ethics in Bioengineering
COMM 120W The Rise of Digital Culture
OR one of these WIM courses (do not fulfill TiS):

CE 100 Managing Sustainable Building Projects
ENGR/CEE 102W Technical and Professional Communication
EARTHSYS 200 Environmental Communication in Action: The SAGE Project

Fundamentals and Depth: At least 40 units total must be from the School of Engineering

Engineering Fundamentals
Two courses minimum (recommend 3), including at least one of the following: 7-9

ENGR 50E Introduction to Materials Science, Energy Emphasis (ENGR 25E also accepted (no longer offered))

Plus at least one of the following:
ENGR 10 Introduction to Engineering Analysis
CSE 106A Programming Methodology

A third Fundamental is optional but recommended (3-4 units)

Engineering Depth
Required: 6-8 units, Introductory seminars may not count toward
32 units from the following with at least four courses from each group; at least 40 of the units in ENGR Fundamentals and Depth must be from the School of Engineering:

Group A: Atmosphere
AA 100 Introduction to Aeronautics and Astronautics
CE 63 Weather and Storms
CE 101B Mechanics of Fluids
or ME 70 Introductory Fluids Engineering
CE 161I Atmosphere, Ocean, and Climate Dynamics: The Atmospheric Circulation
CE 162I Atmosphere, Ocean, and Climate Dynamics: the Ocean Circulation
CE 172 Air Quality Management
CE 178 Introduction to Human Exposure Analysis
EARTHSYS 111 Biology and Global Change
or EARTHSYS 142 Remote Sensing of Land
or EARTHSYS 144 Fundamentals of Geographic Information Science (GIS)
The A/E honors program offers eligible students the opportunity to engage in guided original research, or project design, over the course of an academic year. Interested student must adhere to the following requirements:

1. Prospective honors students write up and submit a 1-2 page letter applying to the honors program in A/E describing the problem to be investigated. The letter must be signed by the student, the current primary adviser, and the proposed honors adviser, if different, and submitted to the student services office in the Department of Civil and Environmental Engineering (CEE). The application must include an unofficial Stanford transcript. Applications must be received in the fourth quarter prior to graduation. It is strongly suggested that prospective honors students meet with the proposed honors adviser well in advance of submitting an application.

2. Students must maintain a GPA of at least 3.5.

3. Students must complete an honors thesis or project over a period of three quarters. The typical length of the written report is 15-20 pages. The deadline for submission of the report is to be decided by the honors adviser, but should be no later than the end of the third week in May.

4. The report must be read and evaluated by the student’s honors adviser and one other reader. It is the student’s responsibility to find and obtain both the adviser and the reader. At least one of the two must be a member of the Academic Council in the School of Engineering.

5. Students must present the completed work in an appropriate forum, e.g. in the same session as honors theses are presented in the department of the adviser. All honors programs require some public presentation of the thesis or project.

6. Students may take up to 10 units of CEE 199H Undergraduate Honors Thesis (optional). However, students must take ENGR 202S Directed Writing Projects or its equivalent (required). Units for the writing class are beyond those required for the A/E major.

7. Two copies of the signed thesis must be provided to the CEE student services office no later than two weeks before the end of the student’s graduation quarter. A pdf of the thesis, including the signature page signed by both readers, should be submitted to the student services officer by May 15. Students will be sent email instructions on how to archive a permanent electronic copy in Terman Engineering library.

For additional information and sample programs, see the Handbook for Undergraduate Engineering Programs (UGHB) (http://ughb.stanford.edu).