CANCER BIOLOGY

Courses offered by the Cancer Biology Program are listed under the subject code CBIO on the Stanford Bulletin’s ExploreCourses web site.

The Cancer Biology Program at Stanford University is an interdisciplinary program leading to the Ph.D. degree. During the past three decades, understanding of cancer has increased with the discovery of oncogenes, tumor suppressor genes, pathways of DNA damage and repair, chromatin remodeling, cell cycle regulation, angiogenesis, and responses to hypoxia, and recent glimpses into the molecular basis of metastasis and cancer stem cell biology. In addition, methods of parallel analysis, including genomics and proteomics approaches, have begun to refine and redefine the taxonomy of cancer diagnosis. This explosion of basic and clinical science has resulted in the first successful cancer chemotherapies and immunotherapies based on the knowledge of specific molecular targets. Stanford presents a unique environment to pursue interdisciplinary cancer research because the schools of Medicine, Humanities and Sciences, and Engineering are located on a single campus.

The goal of the Cancer Biology Ph.D. program is to provide students with education and training that enables them to make significant contributions to this field. Course work during the first year is designed to provide a broad understanding of the molecular, genetic, cell biological, and pathobiological aspects of cancer. Students also learn about the current state of the epidemiology, clinical diagnosis, treatment, and prevention of human cancers. Equally important during the first year is a series of three rotations in research laboratories chosen by each student. By the end of first year, each student chooses a research adviser and begins work on the dissertation project. A qualifying examination must be completed by the end of the second year. An annual Cancer Biology conference provides students with an opportunity to present their research to one another and to faculty. The expected time to degree is four to five years.

Students are not limited to a single department in choosing their research adviser. The Cancer Biology Ph.D. program currently has approximately 65 graduate students located in basic science and clinical departments throughout the School of Medicine and the School of Humanities and Sciences.

Doctor of Philosophy in Cancer Biology

University requirements for the Ph.D. are described under the “Graduate Degrees” section of this bulletin.

A small number of applicants are admitted to the program each year. Applicants should have completed an undergraduate major in the biological sciences; applicants with undergraduate majors in physics, chemistry, or mathematics may be admitted if they complete background training in biology during the first two years of study. During the first year, each student is required to complete a minimum of three, one quarter laboratory rotations. Students must choose a dissertation adviser prior to the end of Summer Quarter, first year, but not before the end of Spring Quarter.

The requirements for the Ph.D. degree are as follows:

1. Training in biology equivalent to that of an undergraduate biology major at Stanford.
2. Completion of the following courses:

- BIOS 200: Foundations in Experimental Biology (5 units)
- CBIO 240: Molecular and Genetic Basis of Cancer (4 units)
- CBIO 242: Cellular and Clinical Aspects of Cancer (4 units)
- CBIO 280: Cancer Biology Journal Club (required for first- and second-year graduate students in Autumn, Winter, and Spring quarters, totaling 6 units)
- CBIO 245: Lecture Seminar Series in Cancer Biology Program (required for first- and second-year graduate students in Autumn, Winter, and Spring quarters, totaling to 6 units)
- MED 255: The Responsible Conduct of Research (1 unit)

ELECTIVES (TOTAL OF 10 UNITS)

Computational/Systems Cancer Biology Track

Core Knowledge

- CBIO 290: Curricular Practical Training (1-2 units)
- STAT 60: Introduction to Statistical Methods: Precalculus (5 units)
- GENE 218: Computational Analysis of Biological Information: Introduction to Python for Biologists (2 units)
- BIOS 205: Introduction to R for Data Analysis (1 unit)
- NENS 230: Analysis Techniques for the Biosciences Using MATLAB (2 units)
- CS 106A: Programming Methodology (3-5 units)
- GENE 211: Genomics (3 units)
- CBIO 243: Principles of Cancer Systems Biology (3 units)
- BIOS 201: Next Generation Sequencing and Applications (2 units)

Additional Courses

- CS 106B: Programming Abstractions (3-5 units)
- STAT 116: Theory of Probability (3-5 units)
- STAT 202: Data Mining and Analysis (3 units)
- STAT 216: Introduction to Statistical Learning (3 units)
- BIOMEDIN 214: Representations and Algorithms for Computational Molecular Biology (3-4 units)
- IMMUNOL 207: Essential Methods in Computational and Systems Immunology (3 units)
- CS 161: Design and Analysis of Algorithms (3-5单位)
- GENE 245: Statistical and Machine Learning Methods for Genomics (3 units)

Other Cancer Biology Related Graduate-Level

- BIO 214: Advanced Cell Biology (4 units)
- SBIO 241: Biological Macromolecules (3-5 units)
- CSB 210: Cell Signaling (4 units)
- IMMUNOL 201: Advanced Immunology I (3 units)
- DBIO 201: Cells and Signaling in Regenerative Medicine (2 units)
- MI 215: Principles of Biological Technologies (3 units)
- CBIO 275: Tumor Immunology (3 units)

3. Other elective course is determined in consultation with the student’s adviser and/or the Program Director.
4. Presentation of research results at the annual Cancer Biology Conference and Pizza Talks.
5. Completion of a qualifying examination in Cancer Biology is required for admission to Ph.D. candidacy. The exam consists of an F31 NRSA-style written grant proposal not to exceed seven pages (excluding references) and an oral examination. The examining committee consists of three faculty members from the Cancer Biology Program and does not include the student's dissertation adviser. The composition of this committee is chosen by the student and dissertation adviser and must be submitted to and approved by the program director prior to the end of Autumn Quarter, second year. The qualifying examination must be taken prior to the end of Spring Quarter, second year. If necessary, one retake is permitted prior to the end of Summer Quarter, second year. After the qualifying examination has been completed, the student is required to form a dissertation reading committee that includes the student's adviser and three other members of the Academic Council with appropriate expertise. Each student is required to arrange annual meetings (more frequently, if necessary) of the dissertation reading committee, at which time progress during the past year and a plan of study for the coming year are presented orally and discussed. Completion of each annual committee meeting must be communicated in writing to the program director by the adviser by the end of Spring Quarter each year.

The major accomplishment of each successful Ph.D. student is the presentation of a written dissertation resulting from independent investigation that contributes to knowledge in the area of cancer biology. An oral examination is also required for the Ph.D. degree. In the Cancer Biology Program, a public seminar (one hour) is presented by the Ph.D. candidate, followed by a closed-door oral examination. The oral examination committee consists of at least four examiners (the members of the doctoral dissertation reading committee) and a chair. The oral examination chair must be from outside the Cancer Biology Program faculty and may not have a full or joint appointment in the adviser's or student's home department. However, a courtesy appointment does not affect eligibility. The oral examination chair may be from the same department as any other member(s) of the examination committee. All members of the oral examination committee are normally members of the Academic Council, as the oral examination chair must be. With the prior approval of the program director or school dean, one of the examiners may be a person who is not a member of the Academic Council if that individual contributes expertise not otherwise available. Official responsibility for selecting the oral examination chair rests with the program. Cancer Biology delegates this to the student and dissertation adviser.

The mission of the Cancer Biology Ph.D. program is to train graduate students so that they may ultimately launch careers related to the study and treatment of cancer. A major goal of program is to assist students in their growth and development by constructing meaningful educational plans. The program believes that students will become outstanding cancer researchers through frequent and collegial personal contacts with their primary research advisers, members of their thesis committee, and other faculty in the program. Scientific interactions between students and faculty foster the development of motivated students who are independent thinkers and responsible decision makers. The program expects faculty thesis advisers to have an active role in the advising process, including by monitoring progress frequently and by helping define and develop realistic educational career plans through regular interactions with the advisee. Faculty thesis advisers should refer students to other institutional resources as needed. The program expects students to clarify their academic and career goals with their advisers and to be equal partners in the advising process, including by scheduling regular meetings with their advisers and by adhering to institutional policies, procedures, and requirements. These expectations, which are detailed in the program handbook, ensure the successful completion of degree requirements and timely graduation.

For a statement of University policy on graduate advising, see the "Graduate Advising (http://exploredegrees.stanford.edu/graduatedegrees/#advisingandcredentialstext)" section of this bulletin.

Advising Expectations

The mission of the Cancer Biology Ph.D. program is to train graduate students so that they may ultimately launch careers related to the study and treatment of cancer. A major goal of program is to assist students in their growth and development by constructing meaningful educational plans. The program believes that students will become outstanding cancer researchers through frequent and collegial personal contacts with their primary research advisers, members of their thesis committee, and other faculty in the program. Scientific interactions between students and faculty foster the development of motivated students who are independent thinkers and responsible decision makers. The program expects faculty thesis advisers to have an active role in the advising process, including by monitoring progress frequently and by helping define and develop realistic educational career plans through regular interactions with the advisee. Faculty thesis advisers should refer students to other institutional resources as needed. The program expects students to clarify their academic and career goals with their advisers and to be equal partners in the advising process, including by scheduling regular meetings with their advisers and by adhering to institutional policies, procedures, and requirements. These expectations, which are detailed in the program handbook, ensure the successful completion of degree requirements and timely graduation.

For a statement of University policy on graduate advising, see the "Graduate Advising (http://exploredegrees.stanford.edu/graduatedegrees/#advisingandcredentialstext)" section of this bulletin.
Medicine/Endocrinology/Gerontology/Metabolism: Katrin Chua
(Associate Professor)

Medicine/Gastroenterology and Hepatology: Anson Lowe (Associate Professor)

Medicine/Hematology: Steven Artandi (Professor), Calvin Kuo (Professor), Ravindra Majeti (Associate Professor)

Medicine/Oncology: Ash Alizadeh (Assistant Professor), Gilbert Chu (Professor), Michael Clarke (Professor), Dean Felsher (Professor), Hanlee Ji (Associate Professor), Ronald Levy (Professor), Beverly S. Mitchell (Professor; Director, Stanford Cancer Institute)

Microbiology and Immunology: Helen M. Blau (Professor), Peter Jackson (Professor), Garry Nolan (Professor)

Neurology and Neurosurgery: Michelle Monje (Assistant Professor)

Neurosurgery: Albert J. Wong (Professor)

Orthopaedic Surgery: Nidhi Bhutani (Assistant Professor)

Otolaryngology: John Sunwoo (Associate Professor)

Pathology: Jeff Axelrod (Professor), Sean Bendall (Assistant Professor), Matthew Boggo (Professor), Michael Cleary (Professor), Gerald Crabtree (Professor), Edgar Engleman (Professor), Andrew Fire (Professor), Joseph Lipsick (Professor), Bingwei Lu (Professor), Jonathan Pollack (Professor), Irving Weissman (Professor; Virginia & D.K. Ludwig Professor for Clinical Investigation in Cancer Research, Professor of Developmental Biology)

Pediatrics/Human Gene Therapy: Mark Kay (Professor)

Pediatrics/Hematology/Oncology: Matthew Porteus (Associate Professor), Kathleen Sakamoto (Professor)

Radiation Oncology/Radiation: Laura Attardi (Professor; Co-Director of Stanford Cancer Biology Program), Amato Giaccia (Professor), Edward Graves (Associate Professor), Sharon Pitteri (Assistant Professor)

Radiation Oncology/Radiation Therapy: Max Diehn (Assistant Professor), Susan Knox (Associate Professor), Quynh-Thu Le (Professor)

Radiology/Diagnostic Radiology: Parag Mallick (Assistant Professor, Research), Sylvia Plevritis (Professor)