CANCER BIOLOGY

Courses offered by the Cancer Biology Program are listed under the subject code CBIO on the ExploreCourses website (http://exploreCourses.stanford.edu/CourseSearch/search/?view=catalog&catalog=0&q=CBIO&filter-catalognumber-CBIO=on). The Cancer Biology Ph.D. program was established in 1978 at Stanford University. During the past four decades, the understanding of cancer has increased dramatically with the discovery of oncogenes and tumor suppressor genes, pathways of DNA damage and repair, cell cycle regulation, angiogenesis and responses to hypoxia, and the molecular basis of metastasis, among others. In addition, methods of parallel analysis including genomic and proteomic approaches have begun to refine and redefine the taxonomy of cancer diagnosis. This explosion of basic and clinical science has, in turn, resulted in the first successful cancer chemotherapies and immunotherapies based on knowledge of specific molecular targets. Stanford presents a unique environment to pursue interdisciplinary cancer research because the School of Medicine, the School of Humanities and Sciences, and the School of Engineering are located on a single campus, all within walking distance of one another.

The goal of the Cancer Biology Ph.D. program is to provide students with education and training that will enable them to make significant contributions to this remarkable field. Coursework during the first year is designed to provide a broad understanding of the molecular, genetic, cell biological, and pathobiological aspects of cancer. Students also learn about the current state of clinical diagnosis and treatment of human cancers. Equally important during the first year is a series of three rotations in research laboratories chosen by each student. By the end of the first year, each student has chosen his/her research advisor and has begun work on his/her dissertation project. A qualifying examination must be completed before the end of December of the second year. An annual Cancer Biology Conference provides students with an opportunity to present their research to one another and to the faculty in the program. The expected time to degree is four to five years.

Students are not limited to a single department in choosing their research advisors. The Cancer Biology Ph.D. program currently has approximately 65 graduate students located in a variety of basic science and clinical departments throughout the School of Medicine and School of Humanities and Sciences. Many students are supported by a training grant from the National Cancer Institute.

The Cancer Biology Ph.D. program is committed to fostering a diverse community of students. The program welcomes all individuals and strives to support them so they achieve their full potential. It values the diversity of its students because culture, socioeconomic and educational background, race, ethnicity, gender, sexual orientation, physical ability, life experiences, hobbies, and interests allow the program as a group to reach a greater level of innovation in cancer research.

Doctor of Philosophy in Cancer Biology

University requirements for the Ph.D. are described under the "Graduate Degrees (http://exploredegrees.stanford.edu/graduatedegrees/)" section of this bulletin.

A small number of applicants are admitted to the program each year. Applicants should have completed an undergraduate major in the biological sciences; applicants with undergraduate majors in physics, chemistry, or mathematics may be admitted if they complete background training in biology during the first two years of study. During the first year, each student is required to complete a minimum of three, one quarter laboratory rotations. Students must choose a dissertation advisor prior to the end of Summer Quarter, the first year, but not before the end of Spring Quarter.

The requirements for the Ph.D. degree are as follows:

1. Training in biology equivalent to that of an undergraduate biology major at Stanford.
2. Completion of the following courses:

<table>
<thead>
<tr>
<th>Required Courses</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 200: Foundations in Experimental Biology</td>
<td>5</td>
</tr>
<tr>
<td>CBIO 240: Molecular and Genetic Basis of Cancer</td>
<td>4</td>
</tr>
<tr>
<td>CBIO 242: Cellular and Clinical Aspects of Cancer</td>
<td>4</td>
</tr>
<tr>
<td>CBIO 280: Cancer Biology Journal Club</td>
<td>1</td>
</tr>
<tr>
<td>CBIO 245: Lecture Seminar Series in Cancer Biology Program</td>
<td>1</td>
</tr>
<tr>
<td>MED 255: The Responsible Conduct of Research</td>
<td>1</td>
</tr>
</tbody>
</table>

Electives (total of 10 units)

<table>
<thead>
<tr>
<th>Courses</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBIO 290: Curricular Practical Training</td>
<td>1-2</td>
</tr>
<tr>
<td>STATS 60: Introduction to Statistical Methods: Precalculus</td>
<td>5</td>
</tr>
<tr>
<td>GENE 218: Computational Analysis of Biological Information: Introduction to Python for Biologists</td>
<td>2</td>
</tr>
<tr>
<td>NENS 230: Analysis Techniques for the Biosciences Using MATLAB</td>
<td>2</td>
</tr>
<tr>
<td>CS 106A: Programming Methodology</td>
<td>3-5</td>
</tr>
<tr>
<td>BIOS 205: Stem Cells, Immunology and Regenerative Medicine (Introduction to R; no longer offered)</td>
<td>1</td>
</tr>
<tr>
<td>GENE 211: Genomics</td>
<td>3</td>
</tr>
<tr>
<td>CBIO 243: Principles of Cancer Systems Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOS 201: Next Generation Sequencing and Applications</td>
<td>2</td>
</tr>
</tbody>
</table>

Additional Courses

<table>
<thead>
<tr>
<th>Courses</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 106B: Programming Abstractions</td>
<td>3-5</td>
</tr>
<tr>
<td>STATS 116: Theory of Probability</td>
<td>4</td>
</tr>
<tr>
<td>STATS 202: Data Mining and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STATS 216: Introduction to Statistical Learning</td>
<td>3</td>
</tr>
<tr>
<td>BIOMEDIN 214: Representations and Algorithms for Computational Molecular Biology</td>
<td>3-4</td>
</tr>
<tr>
<td>IMMUNOL 207: Essential Methods in Computational and Systems Immunology</td>
<td>3</td>
</tr>
<tr>
<td>CS 161: Design and Analysis of Algorithms</td>
<td>3-5</td>
</tr>
<tr>
<td>GENE 245:</td>
<td>3</td>
</tr>
</tbody>
</table>

Other Cancer Biology Related Graduate-Level

<table>
<thead>
<tr>
<th>Courses</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 214: Advanced Cell Biology</td>
<td>4</td>
</tr>
<tr>
<td>SBIO 241: Biological Macromolecules</td>
<td>3-5</td>
</tr>
<tr>
<td>CSB 210: Cell Signaling</td>
<td>4</td>
</tr>
</tbody>
</table>

Stanford Bulletin 2020-21
Continuity policies relating to the pandemic, see the "Graduate School of Business, School of Law, and the School of all undergraduate and graduate programs, excepting the professional

On July 30, the Academic Senate adopted grading policies effective for the academic year 2020-21 with a grade of ‘CR’ (credit) or ‘S’ (satisfactory) towards satisfaction of graduate degree requirements that otherwise require a letter grade provided that the instructor affirms that the work was done at a ‘B’ or better level.

Graduate Degree Requirements

Grading

The Cancer Biology Program counts all courses taken in the academic year 2020-21 with a grade of ‘CR’ (credit) or ‘S’ (satisfactory) towards fulfillment of degree-program requirements and/or alter program requirements as appropriate.

Advising Expectations

The mission of the Cancer Biology Ph.D. program is to train graduate students so that they may ultimately launch careers related to the study and treatment of cancer. A major goal of the program is to assist students in their growth and development by constructing meaningful educational plans. The program believes that students will become outstanding cancer researchers through frequent and collegial personal contacts with their primary research advisors, members of their thesis committee, and other faculty in the program. Scientific interactions between students and faculty foster the development of motivated students who are independent thinkers and responsible decision makers. The program expects faculty thesis advisors to have an active role in the advising process, including by monitoring progress frequently and by helping define and develop realistic educational career plans through regular interactions with the advisee. Faculty thesis advisors should refer students to other institutional resources as needed. The program expects students to clarify their academic and career goals with their advisors and to be equal partners in the advising process, including by scheduling regular meetings with their advisors and by adhering to institutional policies, procedures, and requirements. These expectations, which are detailed in the program handbook, ensure the successful completion of degree requirements and timely graduation.

For a statement of University policy on graduate advising, see the "Graduate Advising (http://exploredegrees.stanford.edu/graduatedegrees/#advisingandcredentialstext)" section of this bulletin.

Program Co-Directors: Laura Attardi (Radiation Oncology and Genetics) and Julien Sage (Pediatrics and Genetics)

Executive Committee on Cancer Biology: Laura Attardi (Radiation Oncology and Genetics), Erinn Rankin (Radiation Oncology, Obstetrics and Gynecology), Julien Sage (Pediatrics and Genetics), Kevin Wang (Dermatology), Monte Winslow (Genetics)

Admissions Committee on Cancer Biology: Laura Attardi (Radiation Oncology and Genetics), Michelle Monje (Neurology), Carolyn Lee (Dermatology), Anthony Oro (Dermatology), Sharon Pitteri (Radiology), Julien Sage (Pediatrics and Genetics), Katrin Svensson (Pathology), Kevin Wang (Dermatology), Monte Winslow (Genetics), Jiangbin Ye (Radiation Oncology and Biology)

Participating Departments and Faculty

Biochemistry: Philip Beachy (Professor), Mark Krasnow (Professor), Julia Salzman (Assistant Professor)

Bioengineering: Jennifer Cochran (Professor)

Biology (School of Humanities and Sciences): Scott J. Dixon (Assistant Professor), Judith Frydman (Professor), Or Gozani (Professor), Ashby Morrison (Associate Professor), Dmitri Petrov (Professor), Jan M Skotheim (Professor), Tim Stearns (Professor)
Biomedical Data Science: Andrew Gentles (Assistant Professor), Purvesh Khatri (Associate Professor), Aaron Newman (Assistant Professor)

Chemical And Systems Biology: James K. Chen (Professor), Gheorghe Chistol (Assistant Professor), Karlene Cimprich (Professor), Mary Teruel (Assistant Professor)

Chemical Engineering and Genetics: Monther Abu-Remaileh (Assistant Professor)

Dermatology: Howard Y. Chang (Professor), Paul A. Khavari (Professor), Carolyn Lee (Assistant Professor), Anthony Oro (Professor), Kevin Wang (Assistant Professor)

Developmental Biology: Margaret Fuller (Professor), Roeland Nusse (Professor)

Genetics: Michael Bassik (Assistant Professor), Anne Brunet (Professor), Christina Curtis (Associate Professor), Julien Sage (Professor; Co-Director of Stanford Cancer Biology Program), Alice Ting (Professor), Monte Winslow (Associate Professor)

Medicine/Endocrinology/Gerontology/Metabolism: Justin Annes (Associate Professor), Katrin Chua (Associate Professor)

Medicine/Gastroenterology and Hepatology: Anson Lowe (Associate Professor)

Medicine/Hematology: Steven Artandi (Professor; Director, Stanford Cancer Institute), Calvin Kuo (Professor), Ravindra Majeti (Professor)

Medicine/Oncology: Ash Alizadeh (Associate Professor), Gilbert Chu (Professor), Michael Clarke (Professor), Dean Felsher (Professor), Hanlee Ji (Associate Professor), Ronald Levy (Professor)

Microbiology and Immunology: Helen M. Blau (Professor), Peter Jackson (Professor), Garry Nolan (Professor)

Neurology and Neurosurgery: Michelle Monje (Associate Professor)

Neurosurgery: Albert J. Wong (Professor)

Orthopedic Surgery: Nidhi Bhatuni (Associate Professor)

Otolaryngology: John Sunwoo (Professor)

Pathology: Robert Angelo (Assistant Professor), Jeff Axelrod (Professor), Sean Bendall (Assistant Professor), Matthew Bogyo (Professor), Michael Cleary (Professor), Gerald Crabtree (Professor), Edgar Engleman (Professor), Andrew Fire (Professor), Joseph Lipsick (Professor), Bingwei Lu (Professor), Jonathan Long (Assistant Professor), Jonathan Pollack (Professor), Capucine van Rechem (Assistant Professor), Ansuman Satpathy (Assistant Professor), Katrin Svensson (Assistant Professor), Irving Weissman (Professor; Virginia & D.K. Ludwig Professor for Clinical Investigation in Cancer Research, Professor of Developmental Biology), Marius Wernig (Professor)

Pediatrics/Human Gene Therapy: Mark Kay (Professor)

Pediatrics/Hematology/Oncology: Charles Gawad (Associate Professor), Crystal Mackall (Professor), Matthew Porteus (Professor), Kathleen Sakamoto (Professor)

Psychiatry and Behavioral Sciences: Erin Gibson (Associate Professor)

Radiation Oncology/Radiation and Cancer Biology: Laura Attardi (Professor; Co-Director of Stanford Cancer Biology Program), Richard Frock (Assistant Professor), Edward Graves (Associate Professor), Sharon Pitteri (Associate Professor), Erinn Rankin (Assistant Professor), Jiangbin Ye (Assistant Professor)

Radiology/Diagnostic Radiology: Parag Mallick (Associate Professor, Research), Sylvia Plevritis (Professor), Tanya Stoyanova (Assistant Professor)

Courses

CBIO 101. Cancer Biology. 4 Units.
Experimental approaches to understanding the origins, diagnosis, and treatment of cancer. Focus on key experiments and discoveries with emphasis on genetics, molecular biology, and cell biology. Topics include carcinogens, tumor virology, oncogenes, tumor suppressor genes, cell cycle regulation, angiogenesis, invasion and metastasis, cancer genomics, cancer epidemiology, and cancer therapies. Discussion sections based on primary research articles that describe key experiments in the field. Satisfies Central Menu Areas 1 or 2 for Bio majors. Prerequisite: Biology or Human Biology core or equivalent, or consent of instructor. Same as: PATH 101

CBIO 240. Molecular and Genetic Basis of Cancer. 4 Units.
Required for first-year Cancer Biology graduate students. Focus is on fundamental concepts in the molecular biology of cancer, including oncogenes, tumor suppressor genes, and cellular signaling pathways. Emphasis will be given to seminal discoveries and key experiments in the field of cancer molecular biology. Course consists of two 1 hour lectures and one 2 hour discussion per week. Enrollment of undergraduates requires consent of the course director.

CBIO 241. Cellular Basis of Cancer. 4 Units.
Focus on tumor cell biology including angiogenesis, metastasis, metabolism, stem cells, and other topics. Prerequisite: CBIO240.

CBIO 242. Cellular and Clinical Aspects of Cancer. 4 Units.
Required for first-year Cancer Biology graduate students, and for first- and second-year medical students intending to complete the Cancer Biology Scholarly Concentration. Focus is on the cellular biology of cancer, including discussion of basic biology including tumor angiogenesis, metabolism, and immunology, as well as clinical oncology and cancer therapeutics. Emphasis will be given to seminal discoveries and key experiments in the field of cancer biology and oncology. Course consists of two 1 hour lectures and one 2 hour discussion per week. Enrollment of undergraduates requires consent of the course director.

CBIO 243. Principles of Cancer Systems Biology. 3 Units.
Focus is on major principles of cancer systems biology research that integrates experimental and computational biology in order to systematically unravel the complexity of cancer. The opportunity to embark on cancer systems biology research has been enabled by the rapid emergence of numerous and increasingly accessible technologies that provide global DNA, RNA and protein expression profiles of cells under a variety of conditions following environmental, drug and genetic perturbations. Course addresses the challenge of how to analyze high-dimensional and highly-multiplexed data in order to synthesize biologically and clinically relevant insights and generate hypotheses for further functional testing. Aims to broaden student exposure to the experimental and computational skills needed to apply the emerging principles of systems biology to the study of cancer.

CBIO 244. Lecture Series in Cancer Systems Biology. 1 Unit.
Presents new concepts in the field of cancer systems biology, demonstrating the integration of novel experimental and computational approaches for addressing outstanding critical questions in cancer biology. Invited speakers share insights about state-of-the-art trends and advice on navigating a career in cancer systems biology. Course required for CSBS Fellows.
CBIO 245. Lecture Seminar Series in Cancer Biology Program. 1 Unit.

CBIO 246. Clinical Cancer Research Internship Program. 1 Unit.
As this is a limited enrollment course, graduate students interested in this course will contact must be affiliated with Cancer Biology Ph.D. Program and must contact the primary instructor Dr. Majeti and the course director Drs. Altardi and Sage by email. A prerequisite for the course is the successful completion of the online training component for HIPAA certification: n1. Documented proof of Measles, Mumps & Rubella immunity in the form of vaccine dates or positive blood tests. n2. Documented proof of Varicella (chicken pox) immunity in the form of vaccine dates or positive blood tests. Annual TB screening (PPD for US born or born in Canada and QFT for foreign born of high risk TB countries). Annual Influenza vaccine (between Nov 1-March 31). n3. Documented proof of Measles, Mumps & Rubella immunity in the form of vaccine dates or positive blood tests. n4. Annual Influenza vaccine (between Nov 1-March 31).

In the first component of the course, Dr. Majeti will identify an oncologist (adult or pediatrics) actively working in the clinic that the student can shadow that quarter for a minimum of 4 hours and will put the student in contact with the clinician. Shadowing hours can be at any time of the week or the weekend. The clinician will contact Dr. Majeti to confirm that the student has shadowed him/her for 4 hours.

In the second component of the course, Dr. Majeti will inform the student when the oncology clinical tumor board meets. The student must attend at least 3 tumor board sessions in the quarter (1h30 each).

In the third component of the course, the student will write a one-page analysis of a clinical paper related to cancer biology.

CBIO 260. Teaching in Cancer Biology. 1-10 Unit.
Practical experience in teaching by serving as a teaching assistant in a cancer biology course. Unit values are allotted individually to reflect the level of teaching responsibility assigned to the student.

CBIO 275. Tumor Immunology. 3 Units.
Tumor Immunology focuses on the mechanisms by which tumors can escape from and subvert the immune system and conversely on the ability of innate and adaptive arms of the immune system to recognize and eliminate tumors. Topics include: tumor antigens, tumor immunosurveillance and immunoediting, tumor microenvironment, tumor induced immunosuppression, tumor immunotherapy (including cancer vaccines, CARs, TILs, checkpoint antibodies, monoclonal antibodies and bispecific antibodies, as well as bone marrow transplantation and radiation therapy). Tracks the historical development of our understanding of modulating tumor immune response and discusses their relative significance in the light of current research findings. Prerequisite: for undergraduates, human biology or biology core. Same as: IMMUNOL 275

CBIO 280. Cancer Biology Journal Club. 1 Unit.
Required of and limited to first- and second-year graduate students in Cancer Biology. Recent papers in the literature presented by graduate students. When possible, discussion relates to and precedes cancer-related seminars at Stanford. Attendance at the relevant seminar required.

CBIO 290. Curricular Practical Training. 1-2 Unit.

CBIO 299. Directed Reading in Cancer Biology. 1-18 Unit.
Prerequisite: consent of instructor.

CBIO 399. Graduate Research. 1-18 Unit.
Students undertake investigations sponsored by individual faculty members. Cancer Biology Ph.D. students must register as soon as they begin dissertation-related research work.

CBIO 801. TGR Project. 0 Units.

CBIO 802. TGR Dissertation. 0 Units.