SYMBOLIC SYSTEMS

Courses offered by the Symbolic Systems Program are listed under the subject code SYMSYS on the Stanford Bulletin’s ExploreCourses web site.

The observation that both human beings and computers can manipulate symbols lies at the heart of Symbolic Systems, an interdisciplinary program focusing on the relationship between natural and artificial systems that represent, process, and act on information. Computer programs, natural languages, the human mind, and the Internet embody concepts whose study forms the core of the Symbolic Systems curriculum, such as computation, representation, communication, and intelligence. A body of knowledge and theory has developed around these notions, from disciplines such as philosophy, computer science, linguistics, psychology, statistics, neurobiology, and communication. Since the invention of computers, researchers have been working across these disciplines to study questions such as: in what ways are computers and computer languages like human beings and their languages; how can the interaction between people and computers be made easier and more beneficial?

The core requirements of the Symbolic Systems Program (SSP) include courses in symbolic logic, the philosophy of mind, formal linguistics, cognitive psychology, programming, the mathematics of computation, statistical theory, artificial intelligence, and interdisciplinary approaches to cognitive science. These courses prepare students with the vocabulary, theoretical background, and technical skills needed for study and research at the advanced undergraduate and graduate levels. Most of the courses in SSP are drawn from affiliated departments. Courses designed specifically for the program are aimed at integrating and supplementing topics covered by the department-based offerings. The curriculum includes humanistic approaches to questions about language and intelligence, as well as training in science and engineering.

SSP offers B.S. and M.S. degree programs. Both programs require students to master a common core of required courses and to choose an area of specialization.

Mission of the Undergraduate Program in Symbolic Systems

The undergraduate program in Symbolic Systems is an interdisciplinary program focusing on the relationships between natural and artificial systems that use symbols to communicate and to represent information. The mission of the program is to prepare majors with the vocabulary, theoretical background, and technical skills necessary to research questions about language, information, and intelligence, both human and machine. The curriculum offers a combination of traditional humanistic approaches to these questions as well as a training and familiarity with contemporary developments in the science and technology of computation. Students in the major take courses in cognitive science, computer programming, logic and computational theory, probability, cognitive psychology, philosophy of mind, linguistics, and artificial intelligence. The program prepares students for a variety of careers in the private and public sectors, especially those involving the human-facing sides of information systems/technology, as well as for further study and research in the cognitive and/or information sciences.

Learning Outcomes (Undergraduate)

The program expects its undergraduate majors to be able to demonstrate the following learning outcomes. These learning outcomes are used in evaluating students and the Symbolic Systems Program. Students are expected to demonstrate:

1. ability to apply formal, philosophical, and/or computational analysis to experimental designs and data and vice versa.
2. ability to understand multiple formal, philosophical, and/or computational frameworks and how they are related to each other.
3. ability to map real world problems or observed phenomena onto formal, philosophical and/or computational frameworks and vice versa.

Learning Outcomes (Graduate)

The purpose of the master’s program is to further develop knowledge and skills in Symbolic Systems and to prepare students for a professional career or doctoral studies. This is achieved through completion of courses representing each of the core disciplines of Symbolic Systems as well as an individualized course program in support of the completion of a Master’s thesis.

Bachelor of Science in Symbolic Systems

The program leading to a B.S. in Symbolic Systems provides students with a core of concepts and techniques, drawing on faculty and courses from various departments. The curriculum prepares students for advanced training in the interdisciplinary study of language and information, or for postgraduate study in any of the main contributing disciplines. It is also excellent preparation for employment immediately after graduation.

Symbolic Systems majors must complete a core of required courses plus a field of study consisting of five additional courses. All major courses are to be taken for letter grades unless an approved course is offered satisfactory/no credit only. All core courses must be passed with a grade of "C-" or better. Students who receive a grade lower than this in a core course must alert the program of this fact so that a decision can be made about whether the student should continue in the major.

Core Requirements

In order to graduate with a B.S. in Symbolic Systems, a student must complete the following requirements. Some of these courses have other courses as prerequisites; students are responsible for completing each course's prerequisites before they take it. With the exception of the advanced small seminar requirement, courses cannot be used towards more than one area of the core requirements. For additional information, see the Symbolic Systems web site (http://symsys.stanford.edu/undergraduate_programs). Note: Students matriculating in the Class of 2018 or later must take SYMSYS 1 Minds and Machines (formerly SYMSYS 100) before their declaration of the Symbolic Systems undergraduate major can be approved.

1. Introductory Core Course

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYMSYS 1 Minds and Machines (formerly SYMSYS 100)</td>
<td>4</td>
</tr>
</tbody>
</table>

2. Continuous Fundamentals Level 1 – Single Variable Calculus

Select one of the following Series:

<table>
<thead>
<tr>
<th>Series</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series A</td>
<td>10 units of Advanced Placement Calculus credit</td>
<td>10</td>
</tr>
<tr>
<td>Series B</td>
<td>MATH 19 and Calculus</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>& MATH 20 and Calculus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& MATH 21 and Calculus</td>
<td></td>
</tr>
<tr>
<td>Series C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Equivalent preparation in Single Variable Calculus, as judged by student

3. Continuous Fundamentals Level 2—Multivariable Calculus

Select one of the following: ¹

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CME 100</td>
<td>Vector Calculus for Engineers</td>
<td>5</td>
</tr>
<tr>
<td>MATH 51</td>
<td>Linear Algebra, Multivariable Calculus, and Modern Applications</td>
<td>6</td>
</tr>
<tr>
<td>MATH 51A</td>
<td>Linear Algebra, Multivariable Calculus, and Modern Applications, ACE</td>
<td>6</td>
</tr>
<tr>
<td>MATH 61CM</td>
<td>Modern Mathematics: Continuous Methods</td>
<td>5</td>
</tr>
<tr>
<td>MATH 61DM</td>
<td>Modern Mathematics: Discrete Methods (Discrete Alternative)</td>
<td>5</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Introduction to Probability Theory</td>
<td>3</td>
</tr>
</tbody>
</table>

¹ The following are optional but recommended and may be required for some higher level courses:

- Additional courses in the Math 50 series
 - MATH 52 Integral Calculus of Several Variables
 - MATH 53 Ordinary Differential Equations with Linear Algebra
- Or additional courses in the CME 100 series
 - CME 102 Ordinary Differential Equations for Engineers (same as ENGR 155A)
 - CME 104 Linear Algebra and Partial Differential Equations for Engineers (same as ENGR 155B)
- Or additional courses in the Math 60 CM series
 - MATH 62CM Modern Mathematics: Continuous Methods
 - MATH 63CM Modern Mathematics: Continuous Methods

4. Continuous Fundamentals Level 3—Probability and Statistics

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 109</td>
<td>Introduction to Probability for Computer Scientists</td>
<td>3-5</td>
</tr>
<tr>
<td>CME 106/ENGR 155C</td>
<td>Introduction to Probability and Statistics for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>EE 178</td>
<td>Probabilistic Systems Analysis</td>
<td>4</td>
</tr>
<tr>
<td>MS&E 120</td>
<td>Probabilistic Analysis</td>
<td>3-4</td>
</tr>
<tr>
<td>MS&E 220</td>
<td>Probabilistic Analysis</td>
<td>5</td>
</tr>
<tr>
<td>STATS 110</td>
<td>Statistical Methods in Engineering and the Physical Sciences</td>
<td>5</td>
</tr>
<tr>
<td>STATS 116</td>
<td>Theory of Probability</td>
<td>4</td>
</tr>
</tbody>
</table>

5. Discrete Fundamentals

a. Computing Level 1

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 106A</td>
<td>Programming Methodology</td>
<td>3-5</td>
</tr>
<tr>
<td>CS 106AP</td>
<td>Programming Methodology</td>
<td>3-5</td>
</tr>
</tbody>
</table>

Or equivalent preparation, as judged by student

b. Computing Level 2

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 106B</td>
<td>Programming Abstractions</td>
<td>3-5</td>
</tr>
<tr>
<td>CS 106X</td>
<td>Programming Abstractions</td>
<td>3-5</td>
</tr>
</tbody>
</table>

c. Logic and Computational Theory

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 103</td>
<td>Mathematical Foundations of Computing</td>
<td>3-5</td>
</tr>
<tr>
<td>PHIL 150</td>
<td>Mathematical Logic</td>
<td>4</td>
</tr>
</tbody>
</table>

6. Technical Depth

Two courses chosen from the list below (from either the same or different areas), appropriate to a student’s concentration. Students concentrating in HCI, AI, or Computer Music must take CS 107 or CS 107E. Other concentrations may also restrict the particular courses that can be taken to fulfill this requirement.

<table>
<thead>
<tr>
<th>Area A. Computer Programming</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 107</td>
<td>3-5</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>CS 107E</td>
<td>3-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area B. Computational Theory</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 154</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 161</td>
<td>3-5</td>
</tr>
<tr>
<td>PHIL 151A</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area C. Logic</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 157</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 151</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 152</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 154</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area D. Decision Theory/Game Theory</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 238</td>
<td>3-4</td>
</tr>
<tr>
<td>ECON 160</td>
<td>5</td>
</tr>
<tr>
<td>ECON 180</td>
<td>5</td>
</tr>
<tr>
<td>MGTECON 613</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 232</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 252</td>
<td>3-4</td>
</tr>
<tr>
<td>POLISCI 356A</td>
<td>3-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area E. Probability and Statistics</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 228</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 246</td>
<td>3-4</td>
</tr>
<tr>
<td>MS&E 121</td>
<td>4</td>
</tr>
<tr>
<td>MS&E 221</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 226</td>
<td>3</td>
</tr>
<tr>
<td>STATS 200</td>
<td>3</td>
</tr>
<tr>
<td>STATS 217</td>
<td>3</td>
</tr>
<tr>
<td>EE 276</td>
<td>3</td>
</tr>
</tbody>
</table>

7. Philosophical Foundations Level 1

Introductory Philosophy

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESF 7</td>
<td>Education as Self-Fashioning: The Transformation of the Self</td>
<td>7</td>
</tr>
<tr>
<td>ESF 8</td>
<td>Education as Self-Fashioning: Recognizing the Self and Its Possibilities</td>
<td>7</td>
</tr>
<tr>
<td>PHIL 1</td>
<td>Introduction to Philosophy</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 2</td>
<td>Introduction to Moral Philosophy</td>
<td>5</td>
</tr>
<tr>
<td>PHIL 20N</td>
<td>Philosophy of Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 60</td>
<td>Introduction to Philosophy of Science</td>
<td>5</td>
</tr>
<tr>
<td>PHIL 70</td>
<td>Introduction to social and political philosophy</td>
<td>4</td>
</tr>
</tbody>
</table>
PHIL 75C (last offered 2018-19)
PHIL 82T Philosophy of Cognitive Science 4
PHIL 102 Modern Philosophy, Descartes to Kant 4
PHIL 135 Existentialism 4
THINK 24 Evil 4
THINK 56 Health Care, Ethics, and Justice 4

All 3 of the following (must complete entire sequence):
SLE 91 Structured Liberal Education
& SLE 92 and Structured Liberal Education
& SLE 93 and Structured Liberal Education

Other introductory courses taught in the Philosophy Department, if approved by the Program Director or Associate Director

9. Philosophical Foundations Level 3

Select one of the following advanced undergraduate course in metaphysics/epistemology (post-PHIL 80):
PHIL 106A (last offered Spring 2017) 4
PHIL 107B Plato's Later Metaphysics and Epistemology 4
PHIL 167D Philosophy of Neuroscience 4
PHIL 173B Metaethics 4
PHIL 175 Philosophy of Law 4
PHIL 180 Metaphysics 4
PHIL 180A Realism, Anti-Realism, Irrealism, Quasi-Realism 4
PHIL 181 Philosophy of Language 4
PHIL 182 Advanced Philosophy of Language 4
PHIL 182A Naturalizing Representation 4
PHIL 184 Epistemology 4
PHIL 186 Philosophy of Mind 4
PHIL 187 Philosophy of Action 4
PHIL 189G Fine-Tuning Arguments for God's Existence 4

Note: Symbolic Systems majors must take PHIL 182 for 3 or more units.

10. Cognition and Neuroscience

Introductory Cognition and Neuroscience

Select one of the following:
PSYCH 30 Introduction to Perception 4
PSYCH 45 Introduction to Learning and Memory 3
PSYCH 50 Introduction to Cognitive Neuroscience 4
PSYCH 141 Cognitive Development 3

An additional undergraduate course in cognition and/or neurosciences

Select one of the following:
BIO 150 Human Behavioral Biology 5
HUMBIO 3B Environmental and Health Policy Analysis 5
PSYCH 30 Introduction to Perception 4
PSYCH 45 Introduction to Learning and Memory 3
PSYCH 50 Introduction to Cognitive Neuroscience 4
PSYCH 60 Introduction to Developmental Psychology 3
PSYCH 60B (last offered Autumn 2015) 4
PSYCH 70 Self and Society: Introduction to Social Psychology 4

PSYCH 80 Introduction to Personality and Affective Science 3
PSYCH 120 Cellular Neuroscience: Cell Signaling and Behavior 4
PSYC 124 Brain Plasticity 3
PSYCH 140 Introduction to Psycholinguistics 4
PSYCH 141 Cognitive Development 3
PSYCH 154 Judgment and Decision-Making 3
THINK 15 How Does Your Brain Work? 4

11. Natural Language

Linguistic Dynamics: Language Processing, Learning, Variation, and Change

Select one of the following:
LINGUIST 1 Introduction to Linguistics 4
LINGUIST 52N Spoken Sexuality: Language and the Social Construction of Sexuality 3
LINGUIST 61S Language Evolution and Change 2-3
LINGUIST 67S The Role of Language in Perception and Cognition 3
LINGUIST 140 Learning to Speak: An Introduction to Child Language Acquisition 4
LINGUIST 150 Language and Society 3-4
LINGUIST 152 Sociolinguistics and Pidgin Creole Studies 2-4
LINGUIST 156 Language and Gender 4
LINGUIST 157 Sociophonetics 1-4
LINGUIST 159 American Dialects 2-4
LINGUIST 160 Introduction to Language Change 2-4
PSYCH 140 Introduction to Psycholinguistics 4

LINGUIST 21N Linguistic Diversity and Universals: The Principles of Language Structure 3
LINGUIST 105 Phonetics 4

Select one of the following:
LINGUIST 110 Introduction to Phonology 4
LINGUIST 112 Seminar in Phonology: Stress, Tone, and Accent 4
LINGUIST 120 Introduction to Syntax 4
LINGUIST 121A The Syntax of English 4
LINGUIST 121B Crosslinguistic Syntax 4
LINGUIST 130A/230A Introduction to Semantics and Pragmatics 4
LINGUIST 130B Introduction to Lexical Semantics 3-4
LINGUIST 272 Structure of Finnish 2-4
LINGUIST 281 Computational Models of Linguistic Formalism 1-4

12. Computation and Cognition

A course applying core technical skills to cognition
NOTE: Students Concentrating in Artificial Intelligence must take CS 221 to fulfill this requirement. Students in other concentrations can select one of the following:
CS 131 Computer Vision: Foundations and Applications 3-4
CS 221 Artificial Intelligence: Principles and Techniques 3-4
CS 228 Probabilistic Graphical Models: Principles and Techniques 3-4
Advanced Small Seminar Requirement

An upper-division, limited-enrollment seminar drawing on material from other courses in the core. Courses listed under Symbolic Systems Program offerings with numbers from SYMSYS 200 through 209 are acceptable, as are other courses as listed in the Advanced Small Seminar section of the Symbolic Systems website. Total enrollment must not exceed 20 students for a course to be approved as fulfilling the Advanced Small Seminar Requirement. A course taken to fulfill this requirement can also be counted toward another requirement, as part of either the core or a student’s concentration, but not both.

Concentration Area

In addition to the core requirements listed above, the Symbolic Systems major requires each student to complete a concentration area consisting of five courses that are thematically related to each other. Students select concentrations from the list below or design others in consultation with their advisers. The concentration area is declared on Axess as a subplan; it appears on the transcript but not on the diploma.

See the Concentration Areas tab (p. 8) for lists of courses for each area.

- Artificial Intelligence (https://symsys.stanford.edu/undergraduatesconcentrations/artificial-intelligence-ai-concentration)
- Computer Music (https://symsys.stanford.edu/undergraduatesconcentrations/computer-music-cm-concentration)
- Learning (https://symsys.stanford.edu/undergraduatesconcentrations/learning-concentration)
- Natural Language (https://symsys.stanford.edu/undergraduatesconcentrations/natural-language-nl-concentration)
- Neurosciences (https://symsys.stanford.edu/undergraduatesconcentrations/neurosciences-neuro-concentration)
- Philosophical Foundations (https://symsys.stanford.edu/undergraduatesconcentrations/philosophical-foundations-concentration)

Note: A course may not count toward both a core and a concentration requirement, unless it is applied to the Advanced Small Seminar area within the core. A course that is applied to the Advanced Small Seminar requirement may also be counted toward a student’s concentration or toward another core requirement, if appropriate, but not to both.

Individually Designed Concentrations (IDCs)

Individually Designed Concentrations (IDCs) consist of five courses in a coherent subject area related to symbolic systems. This relationship may be established through inclusion in an IDC of two or more courses that connect the proposed concentration to the core, i.e. courses that (a) directly apply disciplines included in the core and (b) are related by topic or methodology to the other courses in the proposed concentration.

Course selection is to be made in consultation with the student’s adviser and is subject to approval by the adviser, the Associate Director, and the Director. For examples of IDCs completed by past SSP students, consult the list of alumni and apply the filter “Individually Designed Concentration”.

Approval of an IDC must take place no less than two full quarters before a student plans to graduate, e.g. prior to the first day of Winter Quarter of the senior year if a student intends to graduate in June of that year. Failure to obtain approval by the required date will necessitate either completing the requirements for one of the suggested concentrations, or delaying graduation to the end of the second full quarter following approval of an IDC.

To get a proposed IDC approved, send an email message to symsys-directors at lists.stanford.edu, cc’d to your prospective concentration adviser, stating that the adviser has approved your proposal, and giving a title, one-paragraph description, and course plan for your proposed concentration.

Undergraduate Research

The program encourages all SSP majors to gain experience in directed research by participating in faculty research projects or by pursuing independent study. In addition to the Symbolic Systems Honors Program (see below), the following avenues are offered.

Summer Internships: students work on SSP-related faculty research projects. Application procedures are announced in the Winter Quarter for SSP majors.

Research Assistantships: other opportunities to work on faculty research projects are typically announced to SSP majors as they arise during the academic year.

Independent Study: under faculty supervision. For course credit, students should enroll in SYMSYS 196 Independent Study.

Contact SSP for more information on any of these possibilities, or see the Symbolic Systems (http://symsys.stanford.edu) web site. In addition, see the Undergraduate Advising and Research (https://undergrad.stanford.edu/opportunities/research.html) web site for information on UAR grants and scholarships supporting student research projects at all levels.

Honors Program

Seniors in SSP may apply for admission to the Symbolic Systems honors program prior to the beginning of their final year of study. Students who are accepted into the honors program can graduate with honors by completing an honors thesis under the supervision of a faculty member.
Course credit for the honors project may be obtained by registering for SYMSYS 190 Senior Honors Tutorial any quarter while a student is working on an honors project. SYMSYS 191 Senior Honors Seminar, is recommended for honors students during the senior year. Contact SSP or visit the program’s web site for more information on the honors program, including deadlines and policies.

Minor in Symbolic Systems

Students may minor in Symbolic Systems by completing either Option 1 or Option 2. For additional information see the Symbolic Systems minors web site (http://symsys.stanford.edu/viewing/htmldocument/13635).

Option 1

One course in each of the following core areas (please note that several of these courses have prerequisites):

<table>
<thead>
<tr>
<th>a. Cognition</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYMSYS 1 Minds and Machines (formerly SYMSYS 100)</td>
<td>4</td>
</tr>
<tr>
<td>PSYCH 45 Introduction to Learning and Memory</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 50 Introduction to Cognitive Neuroscience</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b. Logic and Computation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 150 Mathematical Logic</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 151 Metalogic</td>
<td>4</td>
</tr>
<tr>
<td>CS 103 Mathematical Foundations of Computing</td>
<td>3-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c. Computer Programming</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 106B Programming Abstractions</td>
<td>3-5</td>
</tr>
<tr>
<td>CS 106X Programming Abstractions</td>
<td>3-5</td>
</tr>
<tr>
<td>CS 107 Computer Organization and Systems</td>
<td>3-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d. Philosophical Foundations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SYMSYS 1 Minds and Machines (formerly SYMSYS 100)</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 80 Mind, Matter, and Meaning</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>e. Linguistic Theory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LINGUIST 105 Phonetics</td>
<td>4</td>
</tr>
<tr>
<td>LINGUIST 110 Introduction to Phonology</td>
<td>4</td>
</tr>
<tr>
<td>LINGUIST 120 Introduction to Syntax</td>
<td>4</td>
</tr>
<tr>
<td>LINGUIST 121A The Syntax of English</td>
<td>4</td>
</tr>
<tr>
<td>LINGUIST 121B Crosslinguistic Syntax</td>
<td>4</td>
</tr>
<tr>
<td>LINGUIST 130A Introduction to Semantics and Pragmatics</td>
<td>4</td>
</tr>
<tr>
<td>LINGUIST 130B Introduction to Lexical Semantics</td>
<td>3-4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f. Computation and Cognition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>APPPHY 293 Theoretical Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>CS 221 Artificial Intelligence: Principles and Techniques</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 228 Probabilistic Graphical Models: Principles and Techniques</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 229 Machine Learning</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 131 Computer Vision: Foundations and Applications</td>
<td>3-4</td>
</tr>
<tr>
<td>LINGUIST 180 From Languages to Information</td>
<td>3-4</td>
</tr>
<tr>
<td>LINGUIST 182</td>
<td>3-4</td>
</tr>
</tbody>
</table>

\[1\] SYMSYS 1 Minds and Machines (formerly SYMSYS 100) may not be counted for both areas ‘a’ and ‘d’.

Option 2

SYMSYS 1 Minds and Machines (formerly SYMSYS 100), plus an interdisciplinary SSP concentration listed on the SSP (http://symsys.stanford.edu/viewing/htmldocument/16190) web site. To qualify, the selection of courses used for the minor must be interdisciplinary; it must either include courses from at least three departments, or include more than one course from each of two departments.

Coterminal Master's Degrees in Symbolic Systems

The Symbolic Systems M.S. Program admits a handful of coterminal students each year. Coterminal students usually complete the program in one academic year.

The GRE is not required for coterm applicants.

Many SSP majors also complete coterminal M.S. or M.A. degrees in affiliated departments. In addition to the Symbolic Systems M.S. program, the Department of Philosophy offers a Special Program in Symbolic Systems track for interdisciplinary graduate level work leading to the Master of Arts in Philosophy (http://www.stanford.edu/dept/registrar/bulletin/6567.htm).

University Coterminal Requirements

Coterminal master’s degree candidates are expected to complete all master’s degree requirements as described in this bulletin. University requirements for the coterminal master’s degree are described in the “Coterminal Master’s Program (http://exploredegrees.stanford.edu/cotermdegrees)” section. University requirements for the master’s degree are described in the “Graduate Degrees (http://exploredegrees.stanford.edu/graduatedegrees/#masterstext)” section of this bulletin.

After accepting admission to this coterminal master’s degree program, students may request transfer of courses from the undergraduate to the graduate career to satisfy requirements for the master’s degree. Transfer of courses to the graduate career requires review and approval of both the undergraduate and graduate programs on a case by case basis.

In this master’s program, courses taken during or after the first quarter of the sophomore year are eligible for consideration for transfer to the graduate career; the timing of the first graduate quarter is not a factor.

No courses taken prior to the first quarter of the sophomore year may be used to meet master’s degree requirements.

Course transfers are not possible after the bachelor’s degree has been conferred.

The University requires that the graduate adviser be assigned in the student’s first graduate quarter even though the undergraduate career may still be open. The University also requires that the Master’s Degree Program Proposal be completed by the student and approved by the department by the end of the student’s first graduate quarter.
Master of Science in Symbolic Systems

The University’s basic requirements for the M.S. degree are discussed in the "Graduate Degrees" section of this bulletin.

The M.S. degree in Symbolic Systems is designed to be completed in the equivalent of one academic year by coterminal students or returning students who already have a B.S. degree in Symbolic Systems, and in two years or less by other students depending upon level of preparation. Admission is competitive, providing a limited number of students with the opportunity to pursue course and project work in consultation with a faculty adviser who is affiliated with the Symbolic Systems Program. The faculty adviser may impose requirements beyond those described here.

Admission to the program as a coterminal student is subject to the policies and deadlines described in the "Coterminal Bachelor's and Master's Degrees" section of this bulletin. Applicants to the M.S. program are reviewed each Winter Quarter. Information on deadlines, procedures for applying, and degree requirements are available from the program's student services coordinator in the Linguistics Department office (460-127E) and at the Symbolic Systems web site. Note, the GRE is required for external applicants.

Symbolic Systems also offers a Joint Degree with Law School (M.S./J.D.).

Director of Graduate Studies: Michael C. Frank

Degree Requirements

A candidate for the M.S. degree in Symbolic Systems must complete a program of 45 units. All courses must be 100-level and above. At least 36 of these must be graded units, passed with an average grade of 3.0 (B) or better, and any course taken as part of the 45 unit program must be taken for a letter grade unless the course is offered S/NC only. None of the 45 units to be counted toward the M.S. degree may include units counted toward an undergraduate degree at Stanford or elsewhere. Course requirements are waived only if evidence is provided that similar or more advanced courses have been taken, either at Stanford or another institution. Courses that are waived rather than taken may not be counted toward the M.S. degree. For additional information, see the Symbolic Systems web site.

Each candidate for the M.S. degree must fulfill the following requirements:

1. Submission to the Symbolic Systems Program office and approval of the following pre-project research documents:
 a. Project Area Statement, endorsed with a commitment from a student’s prospective project adviser no later than May 1 of the academic year prior to the expected graduation year; and
 b. Qualifying Research Paper due no later than the end of the Summer Quarter prior to the expected graduation year.

2. Completion of a coherent plan of study, to be approved by the Graduate Studies Director in consultation with the student’s adviser and designed to support a student’s project. An initial plan of study should be delineated on the Program Proposal Form prior to the end of the student’s first quarter of study, as required by the University. The final version of the Program Proposal, which should specify all the courses the student has taken and proposes as fulfillment of the unit requirements for the degree, is due by the end of Finals Week in the quarter prior to the student’s expected graduation quarter (i.e. end of Winter Quarter for a student graduating in the Spring). The plan of study must include courses taken for 3 units or more each that are more advanced than the Symbolic Systems undergraduate core in four main skill areas: formal, empirical, computational, and philosophical; and in at least three of the following departments:

 a) Formal: a course in logic and computational theory beyond the level of PHIL 151 Metalogic. The courses below have been approved. Other courses may be approved if appropriate.
 - PHIL 252 Computability and Logic
 - PHIL 254 Modal Logic
 - PHIL 356C Logic and Artificial Intelligence
 - PHIL 357 Research Seminar on Logic and Cognition
 - CS 154 Introduction to Automata and Complexity Theory
 - CS 157 Computational Logic
 - CS 261 Optimization and Algorithmic Paradigms

 b) Empirical: a course drawing on experimental or observational data or methods, beyond the level of PSYCH 55, LINGUIST 120 or 130A. The courses below are examples of those that have been approved. Other courses may be approved if appropriate.
 - CS 224N Natural Language Processing with Deep Learning
 - CS 224U Natural Language Understanding
 - CS 229 Machine Learning
 - LINGUIST 230B Advanced Semantics
 - NBIO 206 The Nervous System
 - NBIO 258 Information and Signaling Mechanisms in Neurons and Circuits
 - PSYCH 204 Computation and Cognition: The Probabilistic Approach
 - PSYCH 204A Human Neuroimaging Methods
 - PSYCH 209 Neural Network Models of Cognition
 - PSYCH 251 Experimental Methods
 - PSYCH 252 Statistical Methods for Behavioral and Social Sciences
 - STATS 200 Introduction to Statistical Inference
 - SYMSYS 245 Cognition in Interaction Design

 c) Computational: a course involving programming beyond the level of CS 107. The courses below have been approved. Other courses may be approved if appropriate.
 - CS 108 Object-Oriented Systems Design
 - CS 110 Principles of Computer Systems
 - CS 124 From Languages to Information
 - CS 142 Web Applications
 - CS 143 Compilers
 - CS 145 Data Management and Data Systems
 - CS 148 Introduction to Computer Graphics and Imaging
 - CS 210A Software Project Experience with Corporate Partners
 - CS 221 Artificial Intelligence: Principles and Techniques
 - CS 224N Natural Language Processing with Deep Learning
 - CS 224W Machine Learning with Graphs
 - CS 246 Mining Massive Data Sets

 d) Philosophical: a course in the area of Philosophy of Mind/Language/Science/Epistemology or Metaphysics at the 200 level or above, certified by the instructor as worthy of graduate credit. The courses below are examples of those that have been approved. Other courses may be approved if appropriate.
 - PHIL 264 Central Topics in the Philosophy of Science: Theory and Evidence
 - PHIL 267D Philosophy of Neuroscience
 - PHIL 281 Philosophy of Language
 - PHIL 281C Slurs and derogatory language
• PHIL 283 Self-knowledge and Metacognition
• PHIL 286 Philosophy of Mind
• PHIL 286A Self-fashioning
• PHIL 327 Scientific Philosophy: From Kant to Kuhn and Beyond
• PHIL 348 Evolution of Signalling
• PHIL 359 Topics in Logic, Information and Agency
• PHIL 377 Social Agency

3. Completion of three quarters of SYMSYS 291 Master’s Program Seminar.

4. Completion of a substantial project appropriate to the program plan, represented by the M.S. Thesis, the last of the the M.S research documents (http://symsys.stanford.edu/viewing/htmldocument/13678). The project normally takes three quarters, and work on the project may account for up to 15 units of a student’s program. The thesis must be read and approved for the master’s degree in Symbolic Systems by two qualified readers approved by the program, at least one of whom must be a member of the academic council. A copy of the thesis must be submitted (in both print and electronic forms) to the Associate Director of Symbolic Systems, with the print version including the signatures of each reader indicating approval of the thesis for the degree of Master of Science, no later than 12 noon on the day of the University Dissertation/Thesis Submission Deadline (https://studentaffairs.stanford.edu/registrar/students/dissertation-thesis) for the quarter of a student’s graduation.

Graduate Advising Expectations

The Symbolic Systems Program is committed to providing academic advising in support of graduate student scholarly and professional development. When most effective, this advising relationship entails collaborative and sustained engagement by both the adviser and the advisee. As a best practice, advising expectations should be periodically discussed and reviewed to ensure mutual understanding. Both the adviser and the advisee are expected to maintain professionalism and integrity.

Faculty advisers guide students in key areas such as selecting courses, designing and conducting research, developing of teaching pedagogy, navigating policies and degree requirements, and exploring academic opportunities and professional pathways.

Graduate students are active contributors to the advising relationship, proactively seeking academic and professional guidance and taking responsibility for informing themselves of policies and degree requirements for their graduate program. Students are expected to meet regularly with their advisers and to keep them informed about their academic progress. Each student and their adviser should mutually agree on the frequency of these meetings when the advising relation begins and reassess their frequency at the start of every quarter.

For a statement of University policy on graduate advising, see the "Graduate Advising (http://exploredegrees.stanford.edu/graduatedegrees/#advisingandcredentialstext)" section of this bulletin.

Faculty

Director: Michael C. Frank

Director of Graduate Studies: Michael C. Frank (on leave Autumn 2019), Christopher Potts (Autumn 2019)

Associate Director: Todd Davies

Faculty Advisory Board: Jeremy Bailenson, Michael Bernstein, Ray Briggs, Todd Davies, Judith DeGEN, Michael C. Frank, Noah Goodman, Thomas Icard, Daniel Jurafsky, Daniel Laszter, Krista Lawlor, Christopher Manning, James McClelland, Stanley Peters, Christopher Potts, Mehran Sahami, Kenneth A. Taylor (deceased December 2, 2019), Johan van Benthem, Thomas A. Wasow

Executive Committee: Michael Bernstein, Todd Davies, Michael C. Frank, Thomas Icard, Christopher Potts

Program Faculty:

Aeronautics and Astronautics: Mykel Kochenderfer (Assistant Professor)
Biology: Deborah Gordon (Professor)
Classics: Reviel Netz (Professor)
Communication: Jeremy Bailenson (Professor), Jeff Hancock (Professor), Byron Reeves (Professor), Frederick Turner (Professor)
Computer Science: Maneesh Agrawala (Professor), Michael Bernstein (Assistant Professor), David Dill (Professor, emeritus), Michael Genesereth (Associate Professor), Oussama Khatib (Professor), Daphne Koller (Adjunct Professor), James Landay (Professor), Jean-Claude Latombe (Professor, emeritus), Marc Levoy (Professor, emeritus), Christopher Manning (Professor), Andrew Ng (Adjunct Professor), Chris Piech (Assistant Professor), Vaughan Pratt (Professor, emeritus), Eric Roberts (Professor, emeritus), Mehran Sahami (Professor, Teaching), Yoav Shoham (Professor, emeritus), Terry Winograd (Professor, emeritus)
Economics: Muriel Niederle (Professor)
Education: Raymond P. McDermott (Professor, emeritus), Roy Pea (Professor), Daniel Schwartz (Professor)
Electrical Engineering: Krishna Shenoy (Professor), Sebastian Thrun (Adjunct Professor)
French and Italian: Jean-Pierre Dupuy (Professor)
Genetics: Russ B. Altman (Professor)
Graduate School of Business: Baba Shiv (Professor)
History: Jessica G. Riskin (Professor)
Law: Mark Lemley (Professor)
Linguistics: Arto Anttila (Associate Professor), Joan Bresnan (Professor, emerita), Eve Clark (Professor, emerita), Cleo Condoravdi (Professor Research), Judith DeGEN (Assistant Professor), Penelope Eckert (Professor), Vera Gribanova (Associate Professor), Boris Harizanov (Assistant Professor), Daniel Jurafsky (Professor), Ronald Kaplan (Adjunct Professor), Lauri Karttunen (Adjunct Professor), Martin Kay (Professor), Paul Kiparsky (Professor), Daniel Laslatter (Research Assistant), Beth Levin (Professor), Christopher Manning (Professor), Stanley Peters (Professor, emeritus), Christopher Potts (Professor), Meghan Sumner (Associate Professor), Thomas A. Wasow (Professor, emeritus), Annie Zaenen (Adjunct Professor)
Management Science and Engineering: Sharad Goel (Assistant Professor), Pamela Hinds (Professor)
Mathematics: Persi Diaconis (Professor)
Mechanical Engineering: Sean Follmer (Assistant Professor)
Medicine: Russ B. Altman (Professor), Mark Musen (Professor)
Music: Jonathan Berger (Professor), Christopher Chafe (Professor), Eleanor Selfridge-Field (Adjunct Professor), Ge Wang (Associate Professor)
Neurobiology: William T. Newsome (Professor), Jennifer Raymond (Professor)
Philosophy: Michael Bratman (Professor), Ray Briggs (Professor), Rosa Cao (Assistant Professor), Mark Crimmins (Associate Professor), John Etchemendy (Professor), Dagfinn Follesdal (Professor, emeritus), Thomas Icard III (Assistant Professor), Krista Lawlor (Professor), Anna-Sara Malmgren (Assistant Professor), John Perry (Professor, emeritus), Brian Skyrms (Professor), Kenneth Taylor (Professor), Johan van Benthem (Professor), Thomas A. Wasow (Professor, emeritus)

Psychiatry and Behavioral Sciences: Vinod Menon (Professor)

Psychology: Herbert H. Clark (Professor, emeritus), Anne Fernald (Associate Professor), Michael C. Frank (Associate Professor), Justin Gardner (Assistant Professor), Noah Goodman (Associate Professor), Kalanit Grill-Spector (Professor), Hyowon Gweon (Assistant Professor), Russell Poldrack (Professor), Barbara Tversky (Professor, emerita), Anthony Wagner (Professor), James McClelland (Professor), Russell Poldrack (Professor), Barbara Tversky (Professor, emerita), Anthony Wagner (Professor), Daniel Yamins (Assistant Professor), Jamil Zaki (Assistant Professor)

Statistics: Persi Diaconis (Professor), Susan P. Holmes (Professor)

Symbolic Systems: Todd Davies (Associate Director), Jeff Shrager (Adjunct Professor), Paul Skokowski (Adjunct Professor)

Other Affiliates: David Barker-Plummer (CSLI Engineering Research Associate), Keith Devlin H-STAR Operation Senior Researcher), Daniel Flickinger (CSLI Research and Development Engineer)

Concentration Areas

In addition to the Core, SSP majors choose an area of concentration. For undergraduates, a concentration comprises an approved list of 5 courses of 3 or more units each.

The following are lists of courses in each concentration. Each concentration listed below has a link to detailed requirements on the Symbolic Systems website.

Applied Logic (https://symsys.stanford.edu/undergraduatesconcentrations/applied-logic-al-concentration)

Introductory Requirements

<table>
<thead>
<tr>
<th>Units</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 154</td>
<td>Introduction to Automata and Complexity Theory</td>
<td>3-4</td>
</tr>
<tr>
<td>PHIL 151</td>
<td>Metalogic</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 152</td>
<td>Computability and Logic</td>
<td>4</td>
</tr>
</tbody>
</table>

Computational

<table>
<thead>
<tr>
<th>Units</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 151</td>
<td>Logic Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 157</td>
<td>Computational Logic</td>
<td>3</td>
</tr>
</tbody>
</table>

Set Theory

<table>
<thead>
<tr>
<th>Units</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 161</td>
<td>Set Theory</td>
<td>3</td>
</tr>
</tbody>
</table>

Formal Semantics

<table>
<thead>
<tr>
<th>Units</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINGUIST 130A</td>
<td>Introduction to Semantics and Pragmatics</td>
<td>4</td>
</tr>
<tr>
<td>LINGUIST 230B</td>
<td>Advanced Semantics</td>
<td>2-4</td>
</tr>
<tr>
<td>LINGUIST 230C</td>
<td>Advanced Topics in Semantics & Pragmatics</td>
<td>1-4</td>
</tr>
<tr>
<td>PHIL 154</td>
<td>Modal Logic</td>
<td>4</td>
</tr>
</tbody>
</table>

Advanced

<table>
<thead>
<tr>
<th>Units</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 156A</td>
<td>Modal Logics - A Modern Perspective</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 159</td>
<td>Non-Classical Logic</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 188W</td>
<td>Paradoxes</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 351</td>
<td>Representation Theorems</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 351B</td>
<td>Proof Mining</td>
<td>1-3</td>
</tr>
</tbody>
</table>

Knowledge Representation and Reasoning

<table>
<thead>
<tr>
<th>Units</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 151</td>
<td>Logic Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 157</td>
<td>Computational Logic</td>
<td>3</td>
</tr>
<tr>
<td>CS 228</td>
<td>Probabilistic Graphical Models: Principles and Techniques</td>
<td>3-4</td>
</tr>
<tr>
<td>PHIL 351C</td>
<td>Formal Methods in Ethics</td>
<td>2-4</td>
</tr>
<tr>
<td>PHIL 351D</td>
<td>Measurement Theory</td>
<td>2-4</td>
</tr>
<tr>
<td>PHIL 353</td>
<td>Seminar on Philosophy of Logic and Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 356</td>
<td>Applications of Modal Logic</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 356C</td>
<td>Logic and Artificial Intelligence</td>
<td>2-4</td>
</tr>
<tr>
<td>PHIL 357</td>
<td>Research Seminar on Logic and Cognition</td>
<td>2-4</td>
</tr>
<tr>
<td>PHIL 359</td>
<td>Topics in Logic, Information and Agency</td>
<td>2-4</td>
</tr>
<tr>
<td>PHIL 391</td>
<td>Seminar on Logic & Formal Philosophy</td>
<td>2-4</td>
</tr>
</tbody>
</table>

Note: PHIL 359 counts only if taken for 3 or more units, in accordance with the policy for all core courses.

Artificial Intelligence (https://symsys.stanford.edu/undergraduatesconcentrations/artificial-intelligence-al-concentration)

<table>
<thead>
<tr>
<th>Units</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 124</td>
<td>From Languages to Information</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 224</td>
<td>Natural Language Processing with Deep Learning</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 224S</td>
<td>Spoken Language Processing</td>
<td>2-4</td>
</tr>
<tr>
<td>CS 224U</td>
<td>Natural Language Understanding</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 276</td>
<td>Information Retrieval and Web Search</td>
<td>3</td>
</tr>
<tr>
<td>SYMSYS 112</td>
<td>Challenges for Language Systems</td>
<td>3-4</td>
</tr>
</tbody>
</table>

Learning

<table>
<thead>
<tr>
<th>Units</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 217</td>
<td>Hardware Accelerators for Machine Learning</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 224W</td>
<td>Machine Learning with Graphs</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 229</td>
<td>Machine Learning</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 230</td>
<td>Deep Learning</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 234</td>
<td>Reinforcement Learning</td>
<td>3</td>
</tr>
<tr>
<td>CS 236</td>
<td>Deep Generative Models</td>
<td>3</td>
</tr>
<tr>
<td>CS 246</td>
<td>Mining Massive Data Sets</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 325B</td>
<td>Data for Sustainable Development</td>
<td>3-5</td>
</tr>
<tr>
<td>EE 104</td>
<td>Introduction to Machine Learning</td>
<td>3-5</td>
</tr>
<tr>
<td>MS&E 234</td>
<td>Data Privacy and Ethics</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 204</td>
<td>Computation and Cognition: The Probabilistic Approach</td>
<td>3</td>
</tr>
<tr>
<td>STATS 315A</td>
<td>Modern Applied Statistics: Learning</td>
<td>3</td>
</tr>
<tr>
<td>STATS 315B</td>
<td>Modern Applied Statistics: Data Mining</td>
<td>3</td>
</tr>
</tbody>
</table>

Robotics and Vision

<table>
<thead>
<tr>
<th>Units</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 131</td>
<td>Computer Vision: Foundations and Applications</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 148</td>
<td>Introduction to Computer Graphics and Imaging</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 223A</td>
<td>Introduction to Robotics</td>
<td>3</td>
</tr>
<tr>
<td>CS 225A</td>
<td>Experimental Robotics</td>
<td>3</td>
</tr>
<tr>
<td>CS 231A</td>
<td>Computer Vision: From 3D Reconstruction to Recognition</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 231N</td>
<td>Convolutional Neural Networks for Visual Recognition</td>
<td>3-4</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Units</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>CS 234</td>
<td>Reinforcement Learning</td>
<td>3</td>
</tr>
<tr>
<td>CS 331B</td>
<td>Representation Learning in Computer Vision</td>
<td>3</td>
</tr>
<tr>
<td>CS 333</td>
<td>Algorithms for Interactive Robotics</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 348K</td>
<td>Visual Computing Systems</td>
<td>3-4</td>
</tr>
<tr>
<td>PSYCH 250</td>
<td>High-level Vision: From Neurons to Deep Neural Networks</td>
<td>1-3</td>
</tr>
<tr>
<td>BIOMEDIN 210</td>
<td>Modeling Biomedical Systems: Ontology, Terminology, Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>BIOMEDIN 214</td>
<td>Representations and Algorithms for Computational Molecular Biology</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 227B</td>
<td>General Game Playing</td>
<td>3</td>
</tr>
<tr>
<td>LAW 4039</td>
<td>Regulating Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 135</td>
<td>Networks</td>
<td>3</td>
</tr>
<tr>
<td>MUSIC 220B</td>
<td>Compositional Algorithms, Psychoacoustics, and Computational Music</td>
<td>2-4</td>
</tr>
<tr>
<td>MUSIC 220C</td>
<td>Research Seminar in Computer-Generated Music</td>
<td>2-4</td>
</tr>
<tr>
<td>PHIL 20N</td>
<td>Philosophy of Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 153L</td>
<td>Computing Machines and Intelligence</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 356C</td>
<td>Logic and Artificial Intelligence</td>
<td>2-4</td>
</tr>
<tr>
<td>PHIL 357</td>
<td>Research Seminar on Logic and Cognition</td>
<td>2-4</td>
</tr>
<tr>
<td>PSYCH 247</td>
<td>Topics in Natural and Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>SYMSYS 207</td>
<td>Conceptual Issues in Cognitive Science</td>
<td>3</td>
</tr>
<tr>
<td>SYMSYS 208</td>
<td>Computer Machines and Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>SYMSYS 275</td>
<td>Collective Behavior and Distributed Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>CME 103</td>
<td>Introduction to Matrix Methods</td>
<td>3-5</td>
</tr>
<tr>
<td>CME 263</td>
<td>Introduction to Linear Dynamical Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 154</td>
<td>Introduction to Automata and Complexity Theory</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 161</td>
<td>Design and Analysis of Algorithms</td>
<td>3-5</td>
</tr>
<tr>
<td>CS 168</td>
<td>The Modern Algorithmic Toolbox</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 205L</td>
<td>Continuous Mathematical Methods with an Emphasis on Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>ECON 160</td>
<td>Game Theory and Economic Applications</td>
<td>5</td>
</tr>
<tr>
<td>EE 103</td>
<td>Introduction to Matrix Methods</td>
<td>3-5</td>
</tr>
<tr>
<td>EE 263</td>
<td>Introduction to Linear Dynamical Systems</td>
<td>3</td>
</tr>
<tr>
<td>EE 276</td>
<td>Information Theory</td>
<td>3</td>
</tr>
<tr>
<td>EE 364A</td>
<td>Convex Optimization I</td>
<td>3</td>
</tr>
<tr>
<td>EE 364B</td>
<td>Convex Optimization II</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 205</td>
<td>Introduction to Control Design Techniques</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 209A</td>
<td>Analysis and Control of Nonlinear Systems</td>
<td>3</td>
</tr>
<tr>
<td>MATH 104</td>
<td>Applied Matrix Theory</td>
<td>3</td>
</tr>
<tr>
<td>MATH 113</td>
<td>Linear Algebra and Matrix Theory</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 251</td>
<td>Introduction to Stochastic Control with Applications</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 152</td>
<td>Computability and Logic</td>
<td>4</td>
</tr>
</tbody>
</table>

PHIL 183 Self-knowledge and Metacognition 4
PHIL 184 Epistemology 4
PHIL 185 Special Topics in Epistemology: Testimony in science and everyday life 4
PHIL 186 Philosophy of Mind 4
PHIL 187 Philosophy of Action 4
PHIL 194A Rationality Over Time 4
PHIL 386 Truth as the aim of belief and inquiry 2-4
PHIL 388 Topics in Normativity 2-4
PSYCH 45 Introduction to Learning and Memory 3
PSYCH 70 Self and Society: Introduction to Social Psychology 4

PSYCH 75 Introduction to Cultural Psychology 5
PSYCH 141 Cognitive Development 3
PSYCH 154 Judgment and Decision-Making 3
PSYCH 160 Seminar on Emotion 3
PSYCH 169 Advanced Seminar on Memory 3
PSYCH 175 Social Cognition and Learning in Early Childhood 3
PSYCH 205 Foundations of Cognition 3
PSYCH 266 Current Debates in Learning and Memory 1-3
PSYCH 285 Graduate Seminar on Theory of Mind 3
SYMSYS 203 Cognitive Science Perspectives on Humanity and Well-Being 3

Neuroscience
BIO 150 Human Behavioral Biology 5
CS 234 Reinforcement Learning 3
EDUC 266 Educational Neuroscience 3
MUSIC 257 Neuroplasticity and Musical Gaming 3-5
NBIO 101 Social and Ethical Issues in the Neurosciences 2-4
NBIO 206 The Nervous System 6
NBIO 258 Information and Signaling Mechanisms in Neurons and Circuits 4
PHIL 167D Philosophy of Neuroscience 4
PHIL 360 Grad Seminar: Philosophy of Neuroscience 2-4
PSYCH 162 Brain Networks 3
PSYCH 164 Brain decoding 3
PSYCH 202 Cognitive Neuroscience 3
PSYCH 204A Human Neuroimaging Methods 3
PSYCH 204B Computational Neuroimaging 1-3
PSYCH 209 Neural Network Models of Cognition 4
PSYCH 232 Brain and Decision 3
PSYCH 248A fMRI Analysis Bootcamp 3
PSYCH 249 Large-Scale Neural Network Modeling for Neuroscience 1-3
PSYCH 251 Experimental Methods 3
PSYCH 254 Affective Neuroscience 3
PSYCH 287 Brain Machine Interfaces: Science, Technology, and Application 1-3

Theoretical Foundations
CS 154 Introduction to Automata and Complexity Theory 3-4
ECON 160 Game Theory and Economic Applications 5
EE 276 Information Theory 3
MATH 113 Linear Algebra and Matrix Theory 3
PHIL 82T Philosophy of Cognitive Science 4
PHIL 152 Computability and Logic 4

PHIL 153L Computing Machines and Intelligence 4
PHIL 154 Modal Logic 4
PHIL 351D Measurement Theory 2-4
PHIL 356C Logic and Artificial Intelligence 2-4
PHIL 357 Research Seminar on Logic and Cognition 2-4
PSYCH 204 Computation and Cognition: The Probabilistic Approach 3
PSYCH 247 Topics in Natural and Artificial Intelligence 3
SYMSYS 202 Theories of Consciousness 3
SYMSYS 207 Conceptual Issues in Cognitive Science 3
SYMSYS 208 Computer Machines and Intelligence 3

Computer Music (https://symsys.stanford.edu/undergraduatesconcentrations/computer-music-cm-concentration)

Music Fundamentals
MUSIC 220A Fundamentals of Computer-Generated Sound 2-4
MUSIC 220B Compositional Algorithms, Psychoacoustics, and Computational Music 2-4

Music and the Mind & Brain
MUSIC 1A Music, Mind, and Human Behavior 3
MUSIC 251 Psychophysics and Music Cognition 1-5
MUSIC 351A Seminar in Music Perception and Cognition 1-3
PSYCH 30 Introduction to Perception 4
PSYCH 50 Introduction to Cognitive Neuroscience 4

Music HCI/Design
CS 147 Introduction to Human-Computer Interaction Design 3-5
MUSIC 128 Stanford Laptop Orchestra: Composition, Coding, and Performance 1-5
MUSIC 250A Physical Interaction Design for Music 3-4
MUSIC 256A Music, Computing, Design I: The Art of Design 3-4

Advanced Research Topics/Electives
CS 108 Object-Oriented Systems Design 3-4
LINGUIST 105 Phonetics 4
LINGUIST 110 Introduction to Phonology 4
MUSIC 220C Research Seminar in Computer-Generated Music 2-4
MUSIC 222 Sound in Space 1-4
MUSIC 253 Symbolic Musical Information 2-4
MUSIC 254 Music Query, Analysis, and Style Simulation 2-4
MUSIC 256B Music, Computing, Design II: Virtual and Augmented Reality for Music 3-4
MUSIC 257 Neuroplasticity and Musical Gaming 3-5
MUSIC 364 Data-Driven Research in Music Cognition 2-4

Philosophical Inquiry
MS&E 234 Data Privacy and Ethics 3
MS&E 254 The Ethical Analyst 1-3
Empirical Findings and Explanations

PHIL 164 Central Topics in the Philosophy of Science: Theory and Evidence 4
PHIL 166 Probability: Ten Great Ideas About Chance 4
PHIL 169 Evolution of the Social Contract 4
PHIL 170 Ethical Theory 4
PHIL 171 Justice 4-5
PHIL 172 History of Moral Philosophy 4
PHIL 184 Epistemology 4
PHIL 187 Philosophy of Action 4
PHIL 194M Capstone Seminar: Consequences for Ethics 4
PHIL 359 Topics in Logic, Information and Agency 2-4
PHIL 377 Social Agency 2-4
PHIL 386 Truth as the aim of belief and inquiry 2-4
PHIL 388 Topics in Normativity 2-4
POLISCI 131L Modern Political Thought: Machiavelli to Marx and Mill 5
POLISCI 230A Classical Seminar: Origins of Political Thought 3-5
PSYCH 160 Seminar on Emotion 3

Note: PHIL 359 counts only if taken for 3 or more units, in accordance with the policy for all core courses.

Formal Decision Theories

ECON 51 Economic Analysis II 5
ECON 136 Market Design 5
ECON 160 Game Theory and Economic Applications 5
ECON 180 Honors Game Theory 5
ECON 182 Honors Market Design 5
ECON 289 Advanced Topics in Game Theory and Information Economics 2-5
INTLPOL 204A Microeconomics for Policy 4-5
MGTECON 613 Foundations of Game Theory 3
MGTECON 616 Topics in Microeconomic Theory 3
MS&E 252 Introduction to Game Theory 3
PHIL 154 Modal Logic 4
PHIL 351 Representation Theorems 4
PHIL 351C Formal Methods in Ethics 2-4
PHIL 351D Measurement Theory 2-4
PHIL 359 Topics in Logic, Information and Agency 2-4
POLISCI 356A Formal Theory I: Game Theory for Political Science 3-5
PUBLPOL 51 Microeconomics for Policy 4-5

Note: PHIL 359 counts only if taken for 3 or more units, in accordance with the policy for all core courses.

Empirical Findings and Explanations

BIO 150 Human Behavioral Biology 5
COMM 172 Media Psychology 4-5
ECON 178 Behavioral Economics 5
ECON 179 Experimental Economics 5
ECON 279 Behavioral and Experimental Economics II 2-5
GSBGEN 646 Behavioral Economics and the Psychology of Decision Making 3
MS&E 389 Seminar on Organizational Theory 5
POLISCI 351B Economic Analysis of Political Institutions 4
POLISCI 351C Institutions and Bridge-Building in Political Economy 4
PSYCH 45 Introduction to Learning and Memory 3
PSYCH 50 Introduction to Cognitive Neuroscience 4
PSYCH 70 Self and Society: Introduction to Social Psychology 4
PSYCH 75 Introduction to Cultural Psychology 5
PSYCH 80 Introduction to Personality and Affective Science 3
PSYCH 154 Judgment and Decision-Making 3
PSYCH 160 Seminar on Emotion 3
PSYCH 205 Foundations of Cognition 3
PSYCH 212 Classic and contemporary social psychology research 1-3
PSYCH 215 Mind, Culture, and Society 3
PSYCH 223 Social Norms 3
PSYCH 232 Brain and Decision 3
PSYCH 251 Experimental Methods 3
PSYCH 270 The Self: Representations and Interventions 3
SOC 114 Economic Sociology 4
SOC 115 Topics in Economic Sociology 5
SOC 120 Interpersonal Relations 4
SOC 126 Introduction to Social Networks 4
SYMSYS 203 Cognitive Science Perspectives on Humanity and Well-Being 3
SYMSYS 275 Collective Behavior and Distributed Intelligence 3

Practical Tools and Applications

CEE 206 Decision Analysis for Civil and Environmental Engineers 3
CS 181 Computers, Ethics, and Public Policy 4
CS 182 Ethics, Public Policy, and Technological Change 5
CS 228 Probabilistic Graphical Models: Principles and Techniques 3-4
CS 238 Decision Making under Uncertainty 3-4
CS 239 Advanced Topics in Sequential Decision Making 3-4
CS 325B Data for Sustainable Development 3-5
ECON 135 Finance for Non-MBAs 3
ECON 136 Market Design 5
ECON 137 Decision Modeling and Information 5
ECON 141 Public Finance and Fiscal Policy 5
ECON 150 Economic Policy Analysis 4-5
ECON 155 Environmental Economics and Policy 5
ECON 162 Games Developing Nations Play 3-5
ECON 181 Honors Information and Incentives 5
ECON 182 Honors Market Design 5
ECON 247 Labor Economics II 2-5
ECON 288 Computational Economics 2-5
MS&E 152 Introduction to Decision Analysis 3-4
MS&E 180 Organizations: Theory and Management 4
MS&E 250A Engineering Risk Analysis 3
MS&E 250B Project Course in Engineering Risk Analysis 3
MS&E 251 Introduction to Stochastic Control with Applications 3
MS&E 252 Decision Analysis I: Foundations of Decision Analysis 3-4
MS&E 352 Decision Analysis II: Professional Decision Analysis 3-4
MS&E 353 Decision Analysis III: Frontiers of Decision Analysis 3
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS&E 355</td>
<td>Influence Diagrams and Probabilistic Networks</td>
<td>3</td>
</tr>
<tr>
<td>POLSCI 152</td>
<td>Introduction to Game Theoretic Methods in Political Science</td>
<td>3-5</td>
</tr>
<tr>
<td>POLSCI 153</td>
<td>Thinking Strategically</td>
<td>5</td>
</tr>
<tr>
<td>SYMSYS 201</td>
<td>Digital Technology, Society, and Democracy</td>
<td>3</td>
</tr>
<tr>
<td>SYMSYS 271</td>
<td>Group Democracy</td>
<td>2-4</td>
</tr>
<tr>
<td>SYMSYS 275</td>
<td>Collective Behavior and Distributed Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>URBANST 132</td>
<td>Concepts and Analytic Skills for the Social Sector</td>
<td>4</td>
</tr>
</tbody>
</table>

Methodological Foundations

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOMEDIN 251</td>
<td>Outcomes Analysis</td>
<td>4</td>
</tr>
<tr>
<td>COMM 106</td>
<td>Communication Research Methods</td>
<td>4-5</td>
</tr>
<tr>
<td>CS 147</td>
<td>Introduction to Human-Computer Interaction Design</td>
<td>3-5</td>
</tr>
<tr>
<td>CS 154</td>
<td>Introduction to Automata and Complexity Theory</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 161</td>
<td>Design and Analysis of Algorithms</td>
<td>3-5</td>
</tr>
<tr>
<td>CS 234</td>
<td>Reinforcement Learning</td>
<td>3</td>
</tr>
<tr>
<td>CS 261</td>
<td>Optimization and Algorithmic Paradigms</td>
<td>3</td>
</tr>
<tr>
<td>ECON 50</td>
<td>Economic Analysis I</td>
<td>5</td>
</tr>
<tr>
<td>ECON 102B</td>
<td>Applied Econometrics</td>
<td>5</td>
</tr>
<tr>
<td>ECON 102C</td>
<td>Advanced Topics in Econometrics</td>
<td>5</td>
</tr>
<tr>
<td>ENGR 62</td>
<td>Introduction to Optimization</td>
<td>3-4</td>
</tr>
<tr>
<td>MS&E 120</td>
<td>Probabilistic Analysis</td>
<td>5</td>
</tr>
<tr>
<td>MS&E 121</td>
<td>Introduction to Stochastic Modeling</td>
<td>4</td>
</tr>
<tr>
<td>MS&E 231</td>
<td>Introduction to Computational Social Science</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 49</td>
<td>Survey of Formal Methods</td>
<td>4</td>
</tr>
<tr>
<td>PSYCH 251</td>
<td>Experimental Methods</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 252</td>
<td>Statistical Methods for Behavioral and Social Sciences</td>
<td>5</td>
</tr>
<tr>
<td>PSYCH 253</td>
<td>High-Dimensional Methods for Behavioral and Neural Data</td>
<td>3</td>
</tr>
<tr>
<td>STATS 200</td>
<td>Introduction to Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>STATS 211</td>
<td>Meta-research: Appraising Research Findings, Bias, and Meta-analysis</td>
<td>3-5</td>
</tr>
<tr>
<td>STATS 217</td>
<td>Introduction to Stochastic Processes I</td>
<td>3</td>
</tr>
<tr>
<td>STATS 218</td>
<td>Introduction to Stochastic Processes II</td>
<td>3</td>
</tr>
<tr>
<td>STATS 263</td>
<td>Design of Experiments</td>
<td>3</td>
</tr>
<tr>
<td>STATS 310A</td>
<td>Theory of Probability I</td>
<td>3</td>
</tr>
<tr>
<td>STATS 310B</td>
<td>Theory of Probability II</td>
<td>3</td>
</tr>
<tr>
<td>STATS 310C</td>
<td>Theory of Probability III</td>
<td>2-4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 147</td>
<td>Introduction to Human-Computer Interaction Design</td>
<td>3-5</td>
</tr>
</tbody>
</table>

HCl Project-Based Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 194H</td>
<td>User Interface Design Project</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 278</td>
<td>Social Computing</td>
<td>3</td>
</tr>
<tr>
<td>CS 347</td>
<td>Human-Computer Interaction Research</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 377E</td>
<td>Designing Solutions to Global Grand Challenges</td>
<td>3-4</td>
</tr>
</tbody>
</table>

HCl Social and Psychological Aspects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 1</td>
<td>Introduction to Communication</td>
<td>5</td>
</tr>
<tr>
<td>COMM 1B</td>
<td>Media, Culture, and Society</td>
<td>5</td>
</tr>
<tr>
<td>COMM 120W</td>
<td>The Rise of Digital Culture</td>
<td>4-5</td>
</tr>
<tr>
<td>COMM 145</td>
<td>Personality and Digital Media</td>
<td>4-5</td>
</tr>
<tr>
<td>COMM 166</td>
<td>Virtual People</td>
<td>4-5</td>
</tr>
<tr>
<td>COMM 172</td>
<td>Media Psychology</td>
<td>4-5</td>
</tr>
<tr>
<td>COMM 322</td>
<td>Advanced Studies in Behavior and Social Media</td>
<td>1-5</td>
</tr>
<tr>
<td>COMM 326</td>
<td>Advanced Topics in Human Virtual Representation</td>
<td>1-5</td>
</tr>
<tr>
<td>CS 80Q</td>
<td>Race and Gender in Silicon Valley</td>
<td>3</td>
</tr>
<tr>
<td>CS 181W</td>
<td>Computers, Ethics, and Public Policy</td>
<td>4</td>
</tr>
<tr>
<td>EDUC 281</td>
<td>Technology for Learners</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 328</td>
<td>Topics in Learning and Technology: Core Mechanics for Learning</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 342</td>
<td>Child Development and New Technologies</td>
<td>3</td>
</tr>
<tr>
<td>ME 115A</td>
<td>Introduction to Human Values in Design</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 135</td>
<td>Networks</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 234</td>
<td>Data Privacy and Ethics</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 70</td>
<td>Self and Society: Introduction to Social Psychology</td>
<td>4</td>
</tr>
<tr>
<td>STS 1</td>
<td>The Public Life of Science and Technology</td>
<td>4</td>
</tr>
<tr>
<td>SYMSYS 201</td>
<td>Digital Technology, Society, and Democracy</td>
<td>3</td>
</tr>
<tr>
<td>SYMSYS 245</td>
<td>Cognition in Interaction Design</td>
<td>3</td>
</tr>
<tr>
<td>SYMSYS 255</td>
<td>Building Digital History: Informatics of Social Movements and Protest</td>
<td>3-5</td>
</tr>
<tr>
<td>SYMSYS 275</td>
<td>Collective Behavior and Distributed Intelligence</td>
<td>3</td>
</tr>
</tbody>
</table>

HCl Programming

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 108</td>
<td>Object-Oriented Systems Design</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 142</td>
<td>Web Applications</td>
<td>3</td>
</tr>
<tr>
<td>CS 148</td>
<td>Introduction to Computer Graphics and Imaging</td>
<td>3-4</td>
</tr>
<tr>
<td>LINGUIST 180</td>
<td>From Languages to Information</td>
<td>3-4</td>
</tr>
</tbody>
</table>

HCl Empirical Methods

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTHRO 155</td>
<td>Research Methods in Ecological Anthropology</td>
<td>5</td>
</tr>
<tr>
<td>COMM 106</td>
<td>Communication Research Methods</td>
<td>4-5</td>
</tr>
<tr>
<td>CS 347</td>
<td>Human-Computer Interaction Research</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 377U</td>
<td>Understanding Users</td>
<td>3-4</td>
</tr>
<tr>
<td>EDUC 407</td>
<td>Lytics Seminar</td>
<td>1-4</td>
</tr>
<tr>
<td>EDUC 423</td>
<td>Introduction to Data Science</td>
<td>3-5</td>
</tr>
<tr>
<td>ENGR 150</td>
<td>Data Challenge Lab</td>
<td>3-5</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Units</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>HUMBIO 82A</td>
<td>Qualitative Research Methodology</td>
<td>3</td>
</tr>
<tr>
<td>ME 341</td>
<td>Design Experiments</td>
<td>3</td>
</tr>
<tr>
<td>MED 147</td>
<td>Methods in Community Assessment, Evaluation, and Research</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 125</td>
<td>Introduction to Applied Statistics</td>
<td>4</td>
</tr>
<tr>
<td>PSYCH 251</td>
<td>Experimental Methods</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 252</td>
<td>Statistical Methods for Behavioral and Social Sciences</td>
<td>5</td>
</tr>
<tr>
<td>STATS 101</td>
<td>Data Science 101</td>
<td>5</td>
</tr>
<tr>
<td>STATS 191</td>
<td>Introduction to Applied Statistics</td>
<td>3</td>
</tr>
<tr>
<td>STATS 200</td>
<td>Introduction to Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>STATS 202</td>
<td>Data Mining and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>STATS 263</td>
<td>Design of Experiments</td>
<td>3</td>
</tr>
</tbody>
</table>

Learning (https://symsys.stanford.edu/undergraduatesconcentrations/learning-concentration)

Computational Learning

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 205L</td>
<td>Continuous Mathematical Methods with an Emphasis on Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>CS 224N</td>
<td>Natural Language Processing with Deep Learning</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 228</td>
<td>Probabilistic Graphical Models: Principles and Techniques</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 229</td>
<td>Machine Learning</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 234</td>
<td>Reinforcement Learning</td>
<td>3</td>
</tr>
<tr>
<td>CS 236</td>
<td>Deep Generative Models</td>
<td>3</td>
</tr>
<tr>
<td>CS 325B</td>
<td>Data for Sustainable Development</td>
<td>3-5</td>
</tr>
<tr>
<td>EE 104</td>
<td>Introduction to Machine Learning</td>
<td>3-5</td>
</tr>
<tr>
<td>EE 276</td>
<td>Information Theory</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 234</td>
<td>Data Privacy and Ethics</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 204</td>
<td>Computation and Cognition: The Probabilistic Approach</td>
<td>3</td>
</tr>
<tr>
<td>STATS 101</td>
<td>Data Science 101</td>
<td>5</td>
</tr>
<tr>
<td>STATS 315A</td>
<td>Modern Applied Statistics: Learning</td>
<td>3</td>
</tr>
<tr>
<td>STATS 315B</td>
<td>Modern Applied Statistics: Data Mining</td>
<td>3</td>
</tr>
</tbody>
</table>

Human Learning

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUC 101</td>
<td>Introduction to Teaching and Learning</td>
<td>4</td>
</tr>
<tr>
<td>EDUC 115N</td>
<td>How to Learn Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 218</td>
<td>Topics in Cognition and Learning: Technology and Multitasking</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 266</td>
<td>Educational Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 368</td>
<td>Cognitive Development in Childhood and Adolescence</td>
<td>3</td>
</tr>
<tr>
<td>LINGUIST 140</td>
<td>Learning to Speak: An Introduction to Child Language Acquisition</td>
<td>4</td>
</tr>
<tr>
<td>LINGUIST 248</td>
<td>Seminar in Development Psycholinguistics</td>
<td>4</td>
</tr>
<tr>
<td>PSYCH 45</td>
<td>Introduction to Learning and Memory</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 50</td>
<td>Introduction to Cognitive Neuroscience</td>
<td>4</td>
</tr>
<tr>
<td>PSYCH 60</td>
<td>Introduction to Developmental Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 141</td>
<td>Cognitive Development</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 145</td>
<td>Seminar on Infant Development</td>
<td>1-2</td>
</tr>
<tr>
<td>PSYCH 169</td>
<td>Advanced Seminar on Memory</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 202</td>
<td>Cognitive Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 204</td>
<td>Computation and Cognition: The Probabilistic Approach</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 251</td>
<td>Experimental Methods</td>
<td>3</td>
</tr>
</tbody>
</table>

Psychology (https://symsys.stanford.edu/undergraduatesconcentrations/psychology-psych)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCH 265</td>
<td>Social Psychology and Social Change</td>
<td>2-3</td>
</tr>
<tr>
<td>PSYCH 266</td>
<td>Current Debates in Learning and Memory</td>
<td>1-3</td>
</tr>
</tbody>
</table>

Learning Environment Design

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 322</td>
<td>Advanced Studies in Behavior and Social Media</td>
<td>1-5</td>
</tr>
<tr>
<td>CS 147</td>
<td>Introduction to Human-Computer Interaction Design</td>
<td>3-5</td>
</tr>
<tr>
<td>CS 194H</td>
<td>User Interface Design Project</td>
<td>3-4</td>
</tr>
<tr>
<td>EDUC 211</td>
<td>Beyond Bits and Atoms - Lab</td>
<td>1-3</td>
</tr>
<tr>
<td>EDUC 230</td>
<td>Learning Experience Design</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 236</td>
<td>Beyond Bits and Atoms: Designing Technological Tools</td>
<td>3-4</td>
</tr>
<tr>
<td>EDUC 281</td>
<td>Technology for Learners</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 298</td>
<td>Seminar on Teaching Introductory Computer Science</td>
<td>1</td>
</tr>
<tr>
<td>EDUC 303</td>
<td>Designing Learning Spaces</td>
<td>3-4</td>
</tr>
<tr>
<td>EDUC 328</td>
<td>Topics in Learning and Technology: Core Mechanics for Learning</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 333A</td>
<td>Understanding Learning Environments</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 342</td>
<td>Child Development and New Technologies</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 391</td>
<td>Engineering Education and Online Learning</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 426</td>
<td>Unleashing Personal Potential: Behavioral Science and Design Thinking Applied to Self</td>
<td>2-4</td>
</tr>
<tr>
<td>MUSIC 257</td>
<td>Neuroplasticity and Musical Gaming</td>
<td>3-5</td>
</tr>
<tr>
<td>SYMSYS 245</td>
<td>Cognition in Interaction Design</td>
<td>3</td>
</tr>
<tr>
<td>SYMSYS 255</td>
<td>Building Digital History: Informatics of Social Movements and Protest</td>
<td>3-5</td>
</tr>
</tbody>
</table>

Natural Language (https://symsys.stanford.edu/undergraduatesconcentrations/natural-language-nl-concentration)

Mathematical/Computational Foundations

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 154</td>
<td>Introduction to Automata and Complexity Theory</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 221</td>
<td>Artificial Intelligence: Principles and Techniques</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 229</td>
<td>Machine Learning</td>
<td>3-4</td>
</tr>
<tr>
<td>PHIL 154</td>
<td>Modal Logic</td>
<td>4</td>
</tr>
<tr>
<td>PSYCH 204</td>
<td>Computation and Cognition: The Probabilistic Approach</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 209</td>
<td>Neural Network Models of Cognition</td>
<td>4</td>
</tr>
<tr>
<td>PSYCH 254</td>
<td>Affective Neuroscience</td>
<td>3</td>
</tr>
</tbody>
</table>

Computational Linguistics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 124</td>
<td>From Languages to Information</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 224N</td>
<td>Natural Language Processing with Deep Learning</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 224S</td>
<td>Spoken Language Processing</td>
<td>2-4</td>
</tr>
<tr>
<td>CS 224U</td>
<td>Natural Language Understanding</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 276</td>
<td>Information Retrieval and Web Search</td>
<td>3</td>
</tr>
<tr>
<td>SYMSYS 112</td>
<td>Challenges for Language Systems</td>
<td>3-4</td>
</tr>
</tbody>
</table>

Phonetics/Phonology/ Speech

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINGUIST 105</td>
<td>Phonetics</td>
<td>4</td>
</tr>
<tr>
<td>LINGUIST 110</td>
<td>Introduction to Phonology</td>
<td>4</td>
</tr>
<tr>
<td>LINGUIST 112</td>
<td>Seminar in Phonology: Stress, Tone, and Accent</td>
<td>4</td>
</tr>
<tr>
<td>LINGUIST 157</td>
<td>Sociophonetics</td>
<td>1-4</td>
</tr>
<tr>
<td>LINGUIST 205B</td>
<td>Advanced Phonetics</td>
<td>2-4</td>
</tr>
</tbody>
</table>
LINGUIST 207A Advanced Phonetics 3
LINGUIST 210A Phonology 3-4
LINGUIST 213 Corpus Phonology 3-4
LINGUIST 260A Historical Morphology and Phonology 2-4

Morphosyntax

LINGUIST 121A The Syntax of English 4
LINGUIST 121B Crosslinguistic Syntax 4
LINGUIST 217 Morphosyntax 2-4
LINGUIST 222A Foundations of Syntactic Theory I 3-4
LINGUIST 225D Seminar in Syntax: Advanced Topics 2-4
LINGUIST 260B Historical Morphosyntax 2-4

Semantics/Pragmatics/Philosophy of Language

LINGUIST 130A Introduction to Semantics and Pragmatics 4
LINGUIST 130B Introduction to Lexical Semantics 3-4
LINGUIST 132 Lexical Semantic Typology 3-4
LINGUIST 230B Advanced Semantics 2-4
LINGUIST 232A Lexical Semantics 2-4
LINGUIST 236 Seminar in Semantics: Causation 2-4
PHIL 137 Wittgenstein 4
PHIL 181 Philosophy of Language 4
PHIL 181C Slurs and derogatory language 4
PHIL 182 Advanced Philosophy of Language 4
PHIL 182A Naturalizing Representation 4
PHIL 194D Capstone Seminar 4
PHIL 194K Slurs and Derogation: Semantic, Pragmatic and Ethical Perspectives 4
PHIL 348 Evolution of Signalling 2-4
PHIL 385D Topics in Philosophy of Language 2-4
SYMSYS 112 Challenges for Language Systems 3-4

Psycholinguistics

LINGUIST 140 Learning to Speak: An Introduction to Child Language Acquisition 4
LINGUIST 246 Foundations of Psycholinguistics 4
LINGUIST 248 Seminar in Developmental Psycholinguistics 4
PSYCH 132 Language and Thought 3
PSYCH 140 Introduction to Psycholinguistics 4
PSYCH 209 Neural Network Models of Cognition 4

Sociolinguistics and Language Change

LINGUIST 65 African American Vernacular English 3-5
LINGUIST 150 Language and Society 3-4
LINGUIST 152 Sociolinguistics and Pidgin Creole Studies 2-4
LINGUIST 156 Language and Gender 4
LINGUIST 157 Sociophonetics 1-4
LINGUIST 159 American Dialects 2-4

Neurosciences (https://symsys.stanford.edu/undergraduatesconcentrations/neurosciences-neuroconcentration)

Units

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 84</td>
<td>Physiology</td>
<td>4</td>
</tr>
<tr>
<td>BIO 150</td>
<td>Human Behavioral Biology</td>
<td>5</td>
</tr>
<tr>
<td>BIO 151</td>
<td>Mechanisms of Neuron Death</td>
<td>3</td>
</tr>
<tr>
<td>BIO 153</td>
<td>Cellular Neuroscience: Cell Signaling and Behavior</td>
<td>4</td>
</tr>
<tr>
<td>BIO 154</td>
<td>Molecular and Cellular Neurobiology</td>
<td>4</td>
</tr>
<tr>
<td>HUMBIO 4A</td>
<td>The Human Organism</td>
<td>5</td>
</tr>
<tr>
<td>NBIO 206</td>
<td>The Nervous System</td>
<td>6</td>
</tr>
<tr>
<td>NBIO 258</td>
<td>Information and Signaling Mechanisms in Neurons and Circuits</td>
<td>4</td>
</tr>
<tr>
<td>PSYCH 121</td>
<td>Ion Transport and Intracellular Messengers</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: NBIO 206 is a 6-unit course, which counts as two concentration courses, from areas 1 and 2.

Systems Neuroscience

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 158</td>
<td>Developmental Neurobiology</td>
<td>4</td>
</tr>
<tr>
<td>BIO 222</td>
<td>Exploring Neural Circuits</td>
<td>3</td>
</tr>
<tr>
<td>EDUC 266</td>
<td>Educational Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 124</td>
<td>Brain Plasticity</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 30</td>
<td>Introduction to Perception</td>
<td>4</td>
</tr>
<tr>
<td>PSYCH 45</td>
<td>Introduction to Learning and Memory</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 50</td>
<td>Introduction to Cognitive Neuroscience</td>
<td>4</td>
</tr>
<tr>
<td>PSYCH 162</td>
<td>Brain Networks</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 169</td>
<td>Advanced Seminar on Memory</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 232</td>
<td>Brain and Decision</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 254</td>
<td>Affective Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 266</td>
<td>Current Debates in Learning and Memory</td>
<td>1-3</td>
</tr>
</tbody>
</table>

Computational Approaches

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOE 101</td>
<td>Systems Biology</td>
<td>3</td>
</tr>
<tr>
<td>CS 223A</td>
<td>Introduction to Robotics</td>
<td>3</td>
</tr>
<tr>
<td>CS 229</td>
<td>Machine Learning</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 379C</td>
<td>Computational Models of the Neocortex</td>
<td>3</td>
</tr>
<tr>
<td>EE 124</td>
<td>Introduction to Neuroelectrical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MUSIC 257</td>
<td>Neuroplasticity and Musical Gaming</td>
<td>3-5</td>
</tr>
<tr>
<td>PSYCH 164</td>
<td>Brain decoding</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 204A</td>
<td>Human Neuroimaging Methods</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 204B</td>
<td>Computational Neuroimaging</td>
<td>1-3</td>
</tr>
<tr>
<td>PSYCH 209</td>
<td>Neural Network Models of Cognition</td>
<td>4</td>
</tr>
<tr>
<td>PSYCH 249</td>
<td>Large-Scale Neural Network Modeling for Neuroscience</td>
<td>1-3</td>
</tr>
<tr>
<td>PSYCH 287</td>
<td>Brain Machine Interfaces: Science, Technology, and Application</td>
<td>1-3</td>
</tr>
</tbody>
</table>

Biological and Computational Approaches to Vision

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 131</td>
<td>Computer Vision: Foundations and Applications</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 231A</td>
<td>Computer Vision: From 3D Reconstruction to Recognition</td>
<td>3-4</td>
</tr>
<tr>
<td>CS 231N</td>
<td>Convolutional Neural Networks for Visual Recognition</td>
<td>3-4</td>
</tr>
<tr>
<td>PSYCH 30</td>
<td>Introduction to Perception</td>
<td>4</td>
</tr>
<tr>
<td>PSYCH 221</td>
<td>Image Systems Engineering</td>
<td>1-3</td>
</tr>
<tr>
<td>PSYCH 250</td>
<td>High-level Vision: From Neurons to Deep Neural Networks</td>
<td>1-3</td>
</tr>
</tbody>
</table>

Philosophical and Theoretical Approaches

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPPHYS 293</td>
<td>Theoretical Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>NBIO 101</td>
<td>Social and Ethical Issues in the Neurosciences</td>
<td>2-4</td>
</tr>
<tr>
<td>PHIL 167D</td>
<td>Philosophy of Neuroscience</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 186</td>
<td>Philosophy of Mind</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 360</td>
<td>Grad Seminar: Philosophy of Neuroscience</td>
<td>2-4</td>
</tr>
<tr>
<td>SYMSYS 202</td>
<td>Theories of Consciousness</td>
<td>3</td>
</tr>
<tr>
<td>SYMSYS 207</td>
<td>Conceptual Issues in Cognitive Science</td>
<td>3</td>
</tr>
</tbody>
</table>

Methodological Foundations

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOE 291</td>
<td>Principles and Practice of Optogenetics for Optical Control of Biological Tissues</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Units</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>CS 205L</td>
<td>Continuous Mathematical Methods with an Emphasis on Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>EE 102A</td>
<td>Signal Processing and Linear Systems I</td>
<td>4</td>
</tr>
<tr>
<td>EE 102B</td>
<td>Signal Processing and Linear Systems II</td>
<td>4</td>
</tr>
<tr>
<td>EE 261</td>
<td>The Fourier Transform and Its Applications</td>
<td>3</td>
</tr>
<tr>
<td>EE 263</td>
<td>Introduction to Linear Dynamical Systems</td>
<td>3</td>
</tr>
<tr>
<td>MATH 113</td>
<td>Linear Algebra and Matrix Theory</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 211</td>
<td>Introduction to Optimization</td>
<td>3-4</td>
</tr>
<tr>
<td>PSYCH 204A</td>
<td>Human Neuroimaging Methods</td>
<td>3</td>
</tr>
<tr>
<td>PSYCH 252</td>
<td>Statistical Methods for Behavioral and Social Sciences</td>
<td>5</td>
</tr>
<tr>
<td>PSYCH 253</td>
<td>High-Dimensional Methods for Behavioral and Neural Data</td>
<td>3</td>
</tr>
<tr>
<td>STATS 141</td>
<td>Biostatistics</td>
<td>5</td>
</tr>
<tr>
<td>STATS 191</td>
<td>Introduction to Applied Statistics</td>
<td>3</td>
</tr>
<tr>
<td>STATS 200</td>
<td>Introduction to Statistical Inference</td>
<td>3</td>
</tr>
</tbody>
</table>

Philosophical Foundations (https://symsys.stanford.edu/undergraduatesconcentrations/philosophical-foundations-concentration)

Area 1

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 180</td>
<td>Metaphysics</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 181</td>
<td>Philosophy of Language</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 181C</td>
<td>Slurs and derogatory language</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 182</td>
<td>Advanced Philosophy of Language</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 182A</td>
<td>Naturalizing Representation</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 183</td>
<td>Self-knowledge and Metacognition</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 183B</td>
<td>Philosophy of Creativity</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 184</td>
<td>Epistemology</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 185</td>
<td>Special Topics in Epistemology: Testimony in science and everyday life</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 185W</td>
<td>Metaontology</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 186</td>
<td>Philosophy of Mind</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 186A</td>
<td>Self-fashioning</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 187</td>
<td>Philosophy of Action</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 188W</td>
<td>Paradoxes</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 189G</td>
<td>Fine-Tuning Arguments for God's Existence</td>
<td>4</td>
</tr>
</tbody>
</table>

Area 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 102</td>
<td>Modern Philosophy, Descartes to Kant</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 170</td>
<td>Ethical Theory</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 170B</td>
<td>Metaphor</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 171</td>
<td>Justice</td>
<td>4-5</td>
</tr>
<tr>
<td>PHIL 171P</td>
<td>20th Century Political Theory: Liberalism and its Critics</td>
<td>5</td>
</tr>
<tr>
<td>PHIL 172</td>
<td>History of Moral Philosophy</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 172B</td>
<td>Recent Ethical Theory: Moral Obligation</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 172C</td>
<td>The Ethics of Care</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 173B</td>
<td>Metaethics</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 173W</td>
<td>Aesthetics</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 175</td>
<td>Philosophy of Law</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 176</td>
<td>Political Philosophy: The Social Contract Tradition</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 176A</td>
<td>Classical Seminar: Origins of Political Thought</td>
<td>3-5</td>
</tr>
<tr>
<td>PHIL 177C</td>
<td>Ethics of Climate Change</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 178</td>
<td>Ethics in Society Honors Seminar</td>
<td>4</td>
</tr>
</tbody>
</table>

Area 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 152</td>
<td>Computability and Logic</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 154</td>
<td>Modal Logic</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 351C</td>
<td>Formal Methods in Ethics</td>
<td>2-4</td>
</tr>
<tr>
<td>PHIL 356C</td>
<td>Logic and Artificial Intelligence</td>
<td>2-4</td>
</tr>
<tr>
<td>PHIL 357</td>
<td>Research Seminar on Logic and Cognition</td>
<td>2-4</td>
</tr>
<tr>
<td>PHIL 359</td>
<td>Topics in Logic, Information and Agency</td>
<td>2-4</td>
</tr>
</tbody>
</table>

Area 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 20N</td>
<td>Philosophy of Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 153L</td>
<td>Computing Machines and Intelligence</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 162</td>
<td>Philosophy of Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 164</td>
<td>Central Topics in the Philosophy of Science: Theory and Evidence</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 165</td>
<td>Philosophy of Physics: Quantum Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 166</td>
<td>Probability: Ten Great Ideas About Chance</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 167D</td>
<td>Philosophy of Neuroscience</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 169</td>
<td>Evolution of the Social Contract</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 194Y</td>
<td>Capstone seminar: Common Sense Philosophy</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 360</td>
<td>Grad Seminar: Philosophy of Neuroscience</td>
<td>2-4</td>
</tr>
<tr>
<td>PHIL 385B</td>
<td>Topics in Metaphysics and Epistemology: Situations and Attitudes</td>
<td>2-4</td>
</tr>
<tr>
<td>PSYCH 160</td>
<td>Seminar on Emotion</td>
<td>3</td>
</tr>
<tr>
<td>SYMSYS 112</td>
<td>Challenges for Language Systems</td>
<td>3-4</td>
</tr>
<tr>
<td>SYMSYS 202</td>
<td>Theories of Consciousness</td>
<td>3</td>
</tr>
<tr>
<td>SYMSYS 207</td>
<td>Conceptual Issues in Cognitive Science</td>
<td>3</td>
</tr>
<tr>
<td>SYMSYS 208</td>
<td>Computer Machines and Intelligence</td>
<td>3</td>
</tr>
</tbody>
</table>