APPLIED PHYSICS

Courses offered by the Department of Applied Physics are listed under the subject code APPPHYS on the Stanford Bulletin’s ExploreCourses web site.

The Department of Applied Physics offers qualified students with backgrounds in physics or engineering the opportunity to do graduate course work and research in the physics relevant to technical applications and natural phenomena. These areas include accelerator physics, biophysics, condensed matter physics, nanomaterials, quantum electronics and photonics, quantum optics and quantum information, space science and astrophysics, synchrotron radiation and applications.

Student research is supervised by the faculty members and also by various members of other departments such as Biology, Chemistry, Electrical Engineering, Materials Science and Engineering, Physics, the SLAC National Accelerator Laboratory, and faculty of the Medical School who are engaged in related research fields.

Research activities are carried out in laboratories including the Geballe Laboratory for Advanced Materials (GLAM), the Edward L. Ginzton Laboratory (GINZTON), the Hansen Experimental Physics Laboratory (HEPL), the SLAC National Accelerator Laboratory, the Center for Probing the Nanoscale, and the Stanford Institute for Materials and Energy Science (SIMES).

The number of graduate students admitted to Applied Physics is limited. Applications to the Master of Science and Ph.D. programs should be received by December 10, 2019. M.S. and Ph.D. students normally enter the department the following Autumn Quarter. Joint applicants for the Knight-Hennessy Scholars Program (http://knight-hennessy.stanford.edu) must submit their Knight-Hennessy Scholars application by October 10, 2019 by 1:00pm Pacific Time and Applied Physics application by December 10, 2019. The general and subject GREs are required for both the Ph.D. and master’s programs. Written requests for a waiver due to extraordinary circumstances are entertained.

Graduate Programs in Applied Physics
The Department of Applied Physics offers three types of advanced degrees:

- the Doctor of Philosophy
- the coterminal Master of Science in Applied and Engineering Physics
- the Master of Science in Applied Physics, either as a terminal degree or an en route degree to the Ph.D. for students already enrolled in the Applied Physics Ph.D. program.

Admission requirements for graduate work in the Master of Science and Ph.D. programs in Applied Physics include a bachelor’s degree in Physics or an equivalent engineering degree. Students entering the program from an engineering curriculum should expect to spend at least an additional quarter of study acquiring the background to meet the requirements for the M.S. and Ph.D. degrees in Applied Physics.

Learning Outcomes (Graduate)
The purpose of the master’s program is to further develop knowledge and skills in Applied Physics and to prepare students for a professional career or doctoral studies. This is achieved through completion of courses, in the primary field as well as related areas, and experience with independent work and specialization.

The Ph.D. is conferred upon candidates who have demonstrated substantial scholarship and the ability to conduct independent research and analysis in Applied Physics. Through completion of advanced course work and rigorous skills training, the doctoral program prepares students to make original contributions to the knowledge of Applied Physics and to interpret and present the results of such research.

The department offers an M.S. in Applied Physics as well as a coterminal M.S. in Applied Physics available, upon application and acceptance, to Stanford undergraduates. Both programs are described below.

Master of Science in Applied Physics
The University’s basic requirements for the master’s degree are discussed in the "Graduate Degrees (http://exploredegrees.stanford.edu/graduatedegrees)" section of this bulletin. The minimum requirements for the degree are 45 units, of which at least 39 units must be graduate-level courses in applied physics, engineering, mathematics, and physics. The deadline for 2020-21 admissions is December 10, 2019. The required program consists of the following:

<table>
<thead>
<tr>
<th>Units</th>
<th>Advanced Mechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Select one of the following:</td>
</tr>
<tr>
<td></td>
<td>PHYSICS 210 Advanced Mechanics</td>
</tr>
<tr>
<td></td>
<td>PHYSICS 211 Continuum Mechanics (approved substitute)</td>
</tr>
<tr>
<td></td>
<td>Electrodynamics</td>
</tr>
<tr>
<td>3</td>
<td>PHYSICS 220 Classical Electrodynamics</td>
</tr>
<tr>
<td></td>
<td>Quantum Mechanics</td>
</tr>
<tr>
<td>6</td>
<td>Select two of the following:</td>
</tr>
<tr>
<td></td>
<td>PHYSICS 230 Graduate Quantum Mechanics I</td>
</tr>
<tr>
<td></td>
<td>PHYSICS 231 Graduate Quantum Mechanics II</td>
</tr>
<tr>
<td></td>
<td>EE 222 Applied Quantum Mechanics I (approved substitute)</td>
</tr>
<tr>
<td></td>
<td>EE 223 Applied Quantum Mechanics II (approved substitute)</td>
</tr>
<tr>
<td></td>
<td>PHYSICS 234 Advanced Topics in Quantum Mechanics (approved substitute)</td>
</tr>
<tr>
<td></td>
<td>PHYSICS 330 Quantum Field Theory I (approved substitute)</td>
</tr>
<tr>
<td></td>
<td>PHYSICS 331 Quantum Field Theory II (approved substitute)</td>
</tr>
<tr>
<td></td>
<td>PHYSICS 332 Quantum Field Theory III (approved substitute)</td>
</tr>
</tbody>
</table>

Directed Studies
APPPHYS 290 Directed Studies in Applied Physics

1-unit Seminar Courses
Examples of suitable courses include

EE 222	Applied Quantum Mechanics I	3
EE 223	Applied Quantum Mechanics II	3
EE 236A	Modern Optics	3
EE 236C	Lasers	3
EE 332	Laser Dynamics	3
EE 346	Introduction to Nonlinear Optics	3
PHYSICS 372	Condensed Matter Theory I	3
PHYSICS 373	Condensed Matter Theory II	3

1. Courses in Physics and Mathematics to overcome deficiencies, if any, in undergraduate preparation.

2. Basic graduate courses (letter grade required):

- 33 units of additional advanced courses in science and/or engineering. May be any combination of APPPHYS 290 Directed...
Coterminal Master of Science in Applied and Engineering Physics

Stanford undergraduates, regardless of undergraduate major, who are interested in a M.S. degree at the intersection of applied physics and engineering may choose to apply for the coterminal Master of Science program in Applied and Engineering Physics. The program is designed to be completed in the fifth year at Stanford. Students with accelerated undergraduate programs may be able to complete their B.S. and coterminal M.S. in four years.

Application and Admission

Undergraduates must be admitted to the program and enrolled as a graduate student for at least one quarter prior to B.S. conferral. Applications are due on the last day of class of the spring quarter (June 5, 2019) for Autumn 2019 matriculation and at least four weeks before the last day of class in the previous quarter for Winter or Spring matriculation (November 6, 2019 for Winter matriculation, February 13, 2020 for Spring matriculation, and June 3, 2020 for Autumn 2020 matriculation). All application materials must be submitted directly to the Applied Physics department office by the deadlines. To apply for admission to the Applied and Engineering Physics coterminal M.S. program, students must submit the coterminal application which consists of the following:

- Application for Admission to Coterminal Master’s Program (https://registrar.stanford.edu/students/coterm-degree-programs/applying-coterm)
- Statement of Purpose
- Unofficial Transcript
- Two Letters of Recommendation from members of the Stanford faculty
- Supplemental Form (http://www.stanford.edu/dept/applied-physics/cgi-bin/aep-application-process)

University Coterminal Requirements

Coterminal master’s degree candidates are expected to complete all master’s degree requirements as described in this bulletin. University requirements for the coterminal master’s degree are described in the “Coterminal Master’s Program (http://exploredegrees.stanford.edu/cotermdegrees)” section. University requirements for the master’s degree are described in the “Graduate Degrees (http://exploredegrees.stanford.edu/graduatedegrees/#masterstext)” section of this bulletin.

After accepting admission to this coterminal master's degree program, students may request transfer of courses from the undergraduate to the graduate career to satisfy requirements for the master’s degree. Transfer of courses to the graduate career requires review and approval of both the undergraduate and graduate programs on a case by case basis.

In this master’s program, courses taken three quarters prior to the first graduate quarter, or later, are eligible for consideration for transfer to the graduate career. No courses taken prior to the first quarter of the sophomore year may be used to meet master’s degree requirements.

Course transfers are not possible after the bachelor’s degree has been conferred.

The University requires that the graduate adviser be assigned in the student’s first graduate quarter even though the undergraduate career may still be open. The University also requires that the Master's Degree Program Proposal be completed by the student and approved by the department by the end of the student’s first graduate quarter.

Program Requirements

Coterminal M.S. students are required to take 45 units of course work during their graduate career. Of these 45 units, the following are required.

<table>
<thead>
<tr>
<th>Four Breadth Courses (required)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPPHYS 201 Electrons and Photons</td>
<td>4</td>
</tr>
<tr>
<td>APPPHYS 203 Atoms, Fields and Phonons</td>
<td>4</td>
</tr>
<tr>
<td>APPPHYS 204 Quantum Materials</td>
<td>4</td>
</tr>
<tr>
<td>APPPHYS 205 Introduction to Biophysics</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Three Engineering Depth Courses</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPPHYS 217 Estimation and Control Methods for Applied Physics (offered 2020-21)</td>
<td></td>
</tr>
<tr>
<td>EE 234 Photonics Laboratory</td>
<td></td>
</tr>
<tr>
<td>EE 251 High-Frequency Circuit Design Laboratory</td>
<td></td>
</tr>
<tr>
<td>EE 312 Integrated Circuit Fabrication Laboratory</td>
<td></td>
</tr>
<tr>
<td>ENGR 341 Micro/Nano Systems Design and Fabrication</td>
<td></td>
</tr>
<tr>
<td>ENGR 342 MEMS Laboratory II</td>
<td></td>
</tr>
<tr>
<td>MATSCI 322 Transmission Electron Microscopy Laboratory</td>
<td></td>
</tr>
<tr>
<td>MATSCI 331 Atom-based computational methods for materials</td>
<td></td>
</tr>
</tbody>
</table>

Seminar

Examples of suitable seminars include:

- APPPHYS 470 Condensed Matter Seminar
- APPPHYS 483 Optics and Electronics Seminar
- BIOPHYS 250 Seminar in Biophysics
- EE 380 Colloquium on Computer Systems
- MATSCI 230 Materials Science Colloquium

Approved Technical Electives

6 units minimum that brings up the total units to 45

Total Units 45

1 The seminar requirement can be fulfilled by either (i) taking one formal seminar course for credit each term, and/or (ii) enrolling in APPPHYS 290 and attending a minimum of eight informal talks or formal research seminars during each of the three terms. Students enrolling in APPPHYS 290 must submit with their final M.S. program proposal a list of the eight talks/seminars with a paragraph describing the content, signed by their academic adviser.
Any request for a course transfer from the undergraduate career is subject to approval of the undergraduate and graduate departments.

Doctor of Philosophy in Applied Physics

The University’s basic requirements for the Ph.D. including residency, dissertation, and examinations are discussed in the "Graduate Degrees (http://exploredegrees.stanford.edu/graduatedegrees)" section of this bulletin. The deadline for the 2020-21 admissions is December 10, 2019.

Joint applicants for the Knight-Hennessy Scholars Program (http://knight-hennessy.stanford.edu) must submit their Knight-Hennessy Scholars application by October 10, 2019 by 1:00pm Pacific Time and Applied Physics application by December 10, 2019. The program leading to a Ph.D. in Applied Physics consists of course work, research, qualifying for Ph.D. candidacy, a research progress report, a University oral examination, and a dissertation as follows:

1. **Course Work:**

 Statistical Physics
 - Select one of the following: 1
 - APPPHYS 217 Estimation and Control Methods for Applied Physics (offered 2020-21)
 - APPPHYS 315 Methods in Computational Biology (offered in 2020-21)
 - PHYSICS 212 Statistical Mechanics
 - **Electrodynamics** 1
 - Select one of the following: 1
 - APPPHYS 201 Electrons and Photons
 - PHYSICS 220 Classical Electrodynamics
 - **Quantum Mechanics**
 - Select one of the following: 1
 - APPPHYS 204 Quantum Materials
 - PHYSICS 230 Graduate Quantum Mechanics I
 - PHYSICS 231 Graduate Quantum Mechanics II
 - EE 222 Applied Quantum Mechanics I (approved substitute)
 - EE 223 Applied Quantum Mechanics II (approved substitute)
 - PHYSICS 234 Advanced Topics in Quantum Mechanics (approved substitute)
 - PHYSICS 330 Quantum Field Theory I (approved substitute)
 - PHYSICS 331 Quantum Field Theory II (approved substitute)
 - PHYSICS 332 Quantum Field Theory III (approved substitute)
 - **Laboratory**
 - Select one of the following: 2
 - APPPHYS 207 Laboratory Electronics
 - APPPHYS 208 Laboratory Electronics
 - APPPHYS 232 Advanced Imaging Lab in Biophysics
 - BIOE 370 Microfluidic Device Laboratory
 - EE 234 Photonics Laboratory
 - EE 312 Integrated Circuit Fabrication Laboratory
 - MATSCI 171 Energy Materials Laboratory

 Units
 - Statistical Physics 3-4
 - Electrodynamics 3-4
 - Quantum Mechanics 3
 - Laboratory 3-4

 Additional units of courses as needed to meet the minimum residency requirement of 135. Directed study and research units as well as 1-unit seminar courses can be included.

 A final average overall grade point average (GPA) of 3.0 (B) is required for courses used to fulfill degree requirements.

 Students are normally expected to complete the specified course requirements by the end of their third year of graduate study.

2. **Research:** may be conducted in a science/engineering field under the supervision of a member of the Applied Physics faculty or appropriate faculty from other departments. If the primary adviser is from a department other than Applied Physics, the student must appoint a co-adviser from the Applied Physics department.

3. **Ph.D. Candidacy:** satisfactory progress in academic and research work, together with passing the Ph.D. candidacy qualifying examination, qualifies the student to apply for Ph.D. candidacy, and must be completed before the third year of graduate registration. The examination consists of a seminar on a suitable subject delivered by the student before a committee consisting of the chair (who is from the graduate studies committee), a faculty member from outside the department chosen by the student, and the third member is from the AP faculty (courtesy appointment is okay).

4. **Research Progress Report:** normally before the end of the Winter Quarter of the fourth year of enrollment in graduate study at Stanford, the student arranges to give an oral research progress report, which could be last up to two hours.

5. **University Ph.D. Oral Examination:** consists of a public seminar in defense of the dissertation, followed by private questioning of the candidate by the University examining committee.

6. **Dissertation:** must be approved and signed by the Ph.D. reading committee.
Graduate Advising Expectations

The Department of Applied Physics is committed to providing academic advising in support of graduate student scholarly and professional development. When most effective, this advising relationship entails collaborative and sustained engagement by both the adviser and the advisee. As a best practice, advising expectations should be periodically discussed and reviewed to ensure mutual understanding. Both the adviser and the advisee are expected to maintain professionalism and integrity.

In addition, the Faculty Candidacy Chair, Professor Daniel Fisher, is available for consultation during the academic year by email and during office hours. The Applied Physics student services office is also an important part of the advising team. Staff in the office inform students and advisers about University and department requirements, procedures, and opportunities, and maintain the official records of advising assignments and approvals.

Faculty advisers guide students in key areas such as selecting courses, designing and conducting research, developing of teaching pedagogy, navigating policies and degree requirements, and exploring academic opportunities and professional pathways.

Graduate students are active contributors to the advising relationship, proactively seeking academic and professional guidance and taking responsibility for informing themselves of policies and degree requirements for their graduate program.

For a statement of University policy on graduate advising, see the "Graduate Advising (http://exploredegrees.stanford.edu/graduatedegrees/#advisingandcredentialstext)" section of this bulletin.

Master of Science Advising

At the start of graduate study, each student is assigned a master's program adviser: a member of our faculty who provides guidance in course selection, course planning, and in exploring short and long term academic opportunities and professional pathways. The program adviser serves as the first resource for consultation and advice about a student’s academic program. Usually, the same faculty member serves as program adviser for the duration of master's study. In rare instances, a formal adviser change request may be considered. See the Applied Physics student services office for additional information on this process.

Ph.D. Advising

Academic advisers are assigned to incoming first year students by the graduate study committee based on their interest of studies. Faculty academic advisers guide students in key areas such as selecting courses, designing and conducting research, developing of teaching pedagogy, navigating policies and degree requirements, and exploring academic opportunities and professional pathways. Each individual program, designed by the student in consultation with the academic adviser, should represent a strong and cohesive program reflecting the student’s major field of interest. Based on the research interest, students and research advisers mutually agree to work on the research together and establish a collaborative relationship. When the research adviser is from outside the Applied Physics department, the student must also identify a co-adviser from departmental primary faculty to provide guidance on departmental requirements and opportunities.

Emeriti: (Professors) Malcolm R. Beasley, Arthur Bienenstock, Alexander L. Fetter, Theodore H. Geballe, Stephen E. Harris, Walter A. Harrison, Peter A. Sturrock, Yoshihisa Yamamoto; (Professors, Research) Helmut Wiedemann, Herman Winick; (Courtesy), Douglas D. Osheroff

Chair: Martin M. Fejer

Chair of Graduate Studies Committee: Daniel S. Fisher

Associate Professors: Benjamin L. Lev, David A. Reis, Mark J. Schnitzer

Assistant Professors: Surya Ganguli, Amir H. Safavi-Naeini, Benjamin Good

Professor (Research): Michel J-F. Digonnet

Courtesy Professors: Mark L. Brongersma, Bruce M. Clemens, Shanhui Fan, David Goldhaber-Gordon, James S. Harris, Lambertus Hesselink, David A. B. Miller, W. E. Moerner, Jelena Vuckovic

Courtesy Associate Professors: William J. Greenleaf, Zhirong Huang, Andrew J. Spakowitz

Adjunct Professors: Thomas M. Baer, Raymond G. Beausoleil, John D. Fox, Richard M. Martin

Stanford Bulletin 2018-19