MATERIALS SCIENCE AND ENGINEERING

Courses offered by the Department of Materials Science and Engineering are listed under the subject code MATSCI on the Stanford Bulletin’s ExploreCourses (http://explorercourses.stanford.edu/browse) website.

The Department of Materials Science and Engineering is concerned with the relation between the structure and properties of materials, factors that control the internal structure of solids, and processes for altering their structure and properties, particularly at the nanoscale.

Mission of the Undergraduate Program in Materials Science and Engineering

The mission of the undergraduate program in Materials Science and Engineering is to provide students with a strong foundation in materials science and engineering with emphasis on the fundamental scientific and engineering principles which underlie the knowledge and implementation of material structure, processing, properties, and performance of all classes of materials used in engineering systems. Courses in the program develop students’ knowledge of modern materials science and engineering, teach them to apply this knowledge analytically to create effective and novel solutions to practical problems, and develop their communication skills and ability to work collaboratively. The program prepares students for careers in industry and for further study in graduate school.

The B.S. in Materials Science and Engineering provides training for the materials engineer and also preparatory training for graduate work in materials science. Capable undergraduates are encouraged to take at least one year of graduate study to extend their course work through the coterminal degree program which leads to an M.S. in Materials Science and Engineering. Coterminal degree programs are encouraged both for undergraduate majors in Materials Science and Engineering and for undergraduate majors in related disciplines.

Learning Outcomes (Undergraduate)

The department expects undergraduate majors in the program to be able to demonstrate the following learning outcomes. These learning outcomes are used in evaluating students and the department’s undergraduate program. Students are expected to demonstrate the ability to:

1. Apply the knowledge of mathematics, science, and engineering to assess and synthesize scientific evidence, concepts, theories, and experimental data relating to the natural or physical world.
2. Extend students’ knowledge of the natural or physical world beyond that obtained from secondary education by refining their powers of scientific observation, the essential process by which data is gained for subsequent analysis.
3. Design and conduct experiments, as well as understand and utilize the scientific method in formulating hypotheses and designing experiments to test hypotheses.
4. Function on multidisciplinary teams, while communicating effectively.
5. Identify, formulate, and solve engineering issues by applying conceptual thinking to solve certain problems, bypassing calculations or rote learning and relying on the fundamental meaning behind laws of nature.
6. Understand professional and ethical responsibility.
7. Understand the impact of engineering solutions in a global, economic, environmental, and societal context.
8. Demonstrate a working knowledge of contemporary issues.
9. Recognize the need for, and engage in, lifelong learning.
10. Apply the techniques, skills, and modern engineering tools necessary for engineering practice.
11. Transition from engineering concepts and theory to real engineering applications and understanding the distinction between scientific evidence and theory, inductive and deductive reasoning, and understanding the role of each in scientific inquiry.

Graduate Programs in Materials Science Engineering

Graduate programs lead to the degrees of Master of Science, Engineer, and Doctor of Philosophy. Graduate students can specialize in any of the areas of materials science and engineering.

Learning Outcomes (Graduate)

The purpose of the master’s program is to provide students with the knowledge and skills necessary for a professional career or doctoral studies. This is done through course and laboratory work in solid state fundamentals and materials engineering, and further course work in a technical depth area which may include a master’s Research Report. Typical depth areas include nanomaterials, electronic and photonic materials, energy materials, nano and biomaterials.

The Ph.D. is conferred upon candidates who have demonstrated substantial scholarship and the ability to conduct independent research. Through course work and guided research, the program prepares students to make original contributions in Materials Science and Engineering and related fields.

Facilities

The department is located in the William F. Durand Building, with extensive facilities in the Jack A. McCullough Building and the Gordon and Betty Moore Materials Research Building. These buildings house offices for the chair, majority of the faculty, administrative and technical staff, graduate students as well as lecture and seminar rooms. The research facilities are equipped to conduct electrical measurements, mechanical testing of bulk and thin film materials, fracture and fatigue of advanced materials, metallography, optical, scanning, transmission electron microscopy, atomic force microscopy, UHV sputter deposition, vacuum annealing treatments, wet chemistry, and x-ray diffraction.

The McCullough/Moore Complex is also the home for the Center for Magnetic Nanotechnology (CMN (https://nanomag.stanford.edu)), Stanford Nanofabrication Laboratory (SNL) and Nanoscale Prototyping Laboratory (NPL (http://npl-web.stanford.edu)); joint facility with Mechanical Engineering in Building 530).

Depending on the needs of their programs, students and faculty also conduct research in a number of other departments and independent laboratories. Chief among these are the Stanford Nanofabrication Facility (SNF (http://snf.stanford.edu)), Geballe Laboratory for Advanced Materials (GLAM (http://stanford.edu/group/glam)), and Stanford Synchrotron Radiation Laboratory (SSRL (http://www-ssrl.slac.stanford.edu)).

The Stanford Nanofabrication Facility (SNF) is a laboratory joining government and industrially funded research on microelectronic materials, devices, and systems. It houses a 10,000 sq. ft., class 100 clean room for Si and GaAs integrated circuit fabrication, a large number of electronic test, materials analysis, and computer facilities, and office space for faculty, staff, and students. In addition, the Center for Integrated Systems (CIS (http://cis.stanford.edu)) provides start-up research funds and maintains a fellow-mentor program with industry.
Bachelor of Science in Materials Science and Engineering (MSE/MATSCI)

Completion of the undergraduate program in Materials Science and Engineering leads to the conferral of the Bachelor of Science in Materials Science and Engineering.

Mission of the Undergraduate Program in Materials Science and Engineering

The mission of the undergraduate program in Materials Science and Engineering is to provide students with a strong foundation in materials science and engineering with emphasis on the fundamental scientific and engineering principles which underlie the knowledge and implementation of material structure, processing, properties, and performance of all classes of materials used in engineering systems. Courses in the program develop students' knowledge of modern materials science and engineering, teach them to apply this knowledge analytically to create effective and novel solutions to practical problems, and develop their communication skills and ability to work collaboratively. The program prepares students for careers in industry and for further study in graduate school.

The B.S. in Materials Science and Engineering provides training for the materials engineer and also preparatory training for graduate work in materials science. Capable undergraduates are encouraged to take at least one year of graduate study to extend their course work through the coterminal degree program which leads to an M.S. in Materials Science and Engineering. Coterminal degree programs are encouraged both for undergraduate majors in Materials Science and Engineering and for undergraduate majors in related disciplines.

Learning Outcomes (Undergraduate)

The department expects undergraduate majors in the program to be able to demonstrate the following learning outcomes. These learning outcomes are used in evaluating students and the department’s undergraduate program. Students are expected to demonstrate the ability to:

1. Apply the knowledge of mathematics, science, and engineering to assess and synthesize scientific evidence, concepts, theories, and experimental data relating to the natural or physical world.
2. Extend students’ knowledge of the natural or physical world beyond that obtained from secondary education by refining their powers of scientific observation, the essential process by which data is gained for subsequent analysis.
3. Design and conduct experiments, as well as understand and utilize the scientific method in formulating hypotheses and designing experiments to test hypotheses.
4. Function on multidisciplinary teams, while communicating effectively.
5. Identify, formulate, and solve engineering issues by applying conceptual thinking to solve certain problems, bypassing calculations or rote learning and relying on the fundamental meaning behind laws of nature.
6. Understand professional and ethical responsibility.
7. Understand the impact of engineering solutions in a global, economic, environmental, and societal context.
8. Demonstrate a working knowledge of contemporary issues.
9. Recognize the need for, and engage in, lifelong learning.
10. Apply the techniques, skills, and modern engineering tools necessary for engineering practice.
11. Transition from engineering concepts and theory to real engineering applications and understanding the distinction between scientific evidence and theory, inductive and deductive reasoning, and understanding the role of each in scientific inquiry.

Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td></td>
</tr>
<tr>
<td>20 units minimum</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>MATH 51 Linear Algebra, Multivariable Calculus, and Modern Applications</td>
<td>5</td>
</tr>
<tr>
<td>CME 100/ ENGR 154 Vector Calculus for Engineers</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>MATH 52 Integral Calculus of Several Variables</td>
<td>5</td>
</tr>
<tr>
<td>CME 104/ ENGR 155B Linear Algebra and Partial Differential Equations for Engineers</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>MATH 53 Ordinary Differential Equations with Linear Algebra</td>
<td>5</td>
</tr>
<tr>
<td>CME 102/ ENGR 155A Ordinary Differential Equations for Engineers</td>
<td></td>
</tr>
<tr>
<td>One additional course</td>
<td>5</td>
</tr>
<tr>
<td>Science</td>
<td></td>
</tr>
<tr>
<td>20 units minimum</td>
<td></td>
</tr>
<tr>
<td>Must include a full year (15 units) of calculus-based physics or chemistry, with one quarter of study (5 units) in the other subject.</td>
<td>20</td>
</tr>
<tr>
<td>Technology in Society</td>
<td></td>
</tr>
<tr>
<td>One course minimum</td>
<td>3-5</td>
</tr>
<tr>
<td>Engineering Fundamentals</td>
<td></td>
</tr>
<tr>
<td>Two courses minimum</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>ENGR 50 Introduction to Materials Science, Nanotechnology Emphasis</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 50E Introduction to Materials Science, Energy Emphasis</td>
<td></td>
</tr>
<tr>
<td>ENGR 50M Introduction to Materials Science, Biomaterials Emphasis</td>
<td></td>
</tr>
<tr>
<td>At least one additional courses</td>
<td>3-5</td>
</tr>
<tr>
<td>Department Requirements: MSE Fundamentals, Depth & Focus Areas</td>
<td></td>
</tr>
<tr>
<td>Materials Science Fundamentals: All of the following courses:</td>
<td>16</td>
</tr>
<tr>
<td>MATSCI 142 Quantum Mechanics of Nanoscale Materials</td>
<td></td>
</tr>
<tr>
<td>MATSCI 143 Materials Structure and Characterization</td>
<td></td>
</tr>
<tr>
<td>MATSCI 144 Thermodynamic Evaluation of Green Energy Technologies</td>
<td></td>
</tr>
<tr>
<td>MATSCI 145 Kinetics of Materials Synthesis</td>
<td></td>
</tr>
<tr>
<td>Two of the following courses:</td>
<td>8</td>
</tr>
<tr>
<td>MATSCI 151 Microstructure and Mechanical Properties</td>
<td></td>
</tr>
<tr>
<td>MATSCI 152 Electronic Materials Engineering</td>
<td></td>
</tr>
<tr>
<td>MATSCI 156 Solar Cells, Fuel Cells, and Batteries: Materials for the Energy Solution</td>
<td></td>
</tr>
<tr>
<td>MATSCI 158 Soft Matter in Biomedical Devices, Microelectronics, and Everyday Life</td>
<td></td>
</tr>
<tr>
<td>MATSCI 190 Organic and Biological Materials</td>
<td></td>
</tr>
<tr>
<td>MATSCI 192 Materials Chemistry</td>
<td></td>
</tr>
<tr>
<td>MATSCI 193 Atomic Arrangements in Solids</td>
<td></td>
</tr>
<tr>
<td>MATSCI 194 Thermodynamics and Phase Equilibria</td>
<td></td>
</tr>
<tr>
<td>MATSCI 195 Waves and Diffraction in Solids</td>
<td></td>
</tr>
</tbody>
</table>
Focus Area Options (Four courses for a minimum of 13 units; select from one of the ten Focus Areas.)

Bioengineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOE 80</td>
<td>Introduction to Bioengineering (Engineering Living Matter)</td>
</tr>
<tr>
<td>BIOE 220</td>
<td>Introduction to Imaging and Image-based Human Anatomy</td>
</tr>
<tr>
<td>BIOE 260</td>
<td>Tissue Engineering</td>
</tr>
</tbody>
</table>

Chemical Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 171</td>
<td>Physical Chemistry I</td>
</tr>
<tr>
<td>CHEMENG 130</td>
<td>Micro and Nanoscale Fabrication Engineering</td>
</tr>
<tr>
<td>CHEMENG 150</td>
<td>Biochemical Engineering</td>
</tr>
</tbody>
</table>

Chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 151</td>
<td>Inorganic Chemistry I</td>
</tr>
<tr>
<td>CHEM 153</td>
<td>Inorganic Chemistry II</td>
</tr>
<tr>
<td>CHEM 171</td>
<td>Physical Chemistry I</td>
</tr>
<tr>
<td>CHEM 173</td>
<td>Physical Chemistry II</td>
</tr>
<tr>
<td>CHEM 175</td>
<td>Physical Chemistry III</td>
</tr>
<tr>
<td>CHEM 181</td>
<td>Biochemistry I</td>
</tr>
<tr>
<td>CHEM 183</td>
<td>Biochemistry II</td>
</tr>
<tr>
<td>CHEM 185</td>
<td>Biophysical Chemistry</td>
</tr>
</tbody>
</table>

Electronics & Photonics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 101A</td>
<td>Circuits I</td>
</tr>
<tr>
<td>EE 101B</td>
<td>Circuits II</td>
</tr>
<tr>
<td>EE 102A</td>
<td>Signal Processing and Linear Systems I</td>
</tr>
<tr>
<td>EE 102B</td>
<td>Signal Processing and Linear Systems II</td>
</tr>
<tr>
<td>EE 116</td>
<td>Semiconductor Devices for Energy and Electronics</td>
</tr>
<tr>
<td>EE 134</td>
<td>Introduction to Photonics</td>
</tr>
<tr>
<td>EE 142</td>
<td>Engineering Electromagnetics (Formerly EE 141)</td>
</tr>
<tr>
<td>EE 155</td>
<td>Green Electronics</td>
</tr>
<tr>
<td>ME 210</td>
<td>Introduction to Mechatronics</td>
</tr>
<tr>
<td>MATSCI 343</td>
<td>Organic Semiconductors for Electronics and Photonics</td>
</tr>
<tr>
<td>MATSCI 346</td>
<td>Nanophotonics</td>
</tr>
</tbody>
</table>

Energy Technology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 293B</td>
<td>Fundamentals of Energy Processes</td>
</tr>
<tr>
<td>EE 155</td>
<td>Green Electronics</td>
</tr>
<tr>
<td>CEE 107A</td>
<td>Understanding Energy</td>
</tr>
<tr>
<td>EE 293B</td>
<td>Fundamentals of Energy Processes</td>
</tr>
<tr>
<td>MATSCI 156</td>
<td>Solar Cells, Fuel Cells, and Batteries: Materials for the Energy Solution</td>
</tr>
<tr>
<td>MATSCI 302</td>
<td>Solar Cells</td>
</tr>
<tr>
<td>MATSCI 303</td>
<td>Principles, Materials and Devices of Batteries</td>
</tr>
<tr>
<td>ME 262</td>
<td>Physics of Wind Energy</td>
</tr>
</tbody>
</table>

Materials Characterization Techniques

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATSCI 320</td>
<td>Nanocharacterization of Materials</td>
</tr>
<tr>
<td>MATSCI 321</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>MATSCI 322</td>
<td>Transmission Electron Microscopy Laboratory</td>
</tr>
</tbody>
</table>
Honors Program

The Materials Science and Engineering honors program offers an opportunity for undergraduate Materials Science and Engineering majors with a GPA of 3.5 or higher to pursue independent research at an advanced level, supported by a faculty adviser and graduate student mentors. The main requirements are as follows:

1. Application to the honors program (must be pre-approved by faculty adviser)
2. Enrollment in MATSCI 150 Undergraduate Research and participation in an independent research project over three sequential full quarters
3. Completion of a faculty-approved thesis

4. Participation in either a poster or oral presentation of thesis work at a Stanford Symposium/event or, at your faculty adviser's discretion, in a comparable public event.

Since this requires three full quarters of research in addition to a final written thesis and presentation following completion of the work, students must apply to the program no less than four quarters prior to their planned graduation date. Materials Science and Engineering majors pursuing a typical four-year graduation timeline should meet with student services no later than the Winter Quarter of their junior year to receive information on the application process.

All requirements for the honors program are in addition to the normal undergraduate program requirements.

To apply to the MATSCI Honors program:

- Have an overall GPA of 3.5 or higher (as calculated on the unofficial transcript) prior to application.
- Seek out a faculty research adviser and agree on a proposed research topic. If the research adviser is not a member of the MSE faculty, or not a member of the School of Engineering Academic Council, students must have a second adviser who fulfills these requirements.
- Have an overall GPA of 3.5 or higher (as calculated on the unofficial transcript) prior to application.
- Submit application to MATSCI student services (Durand 113) at least four quarters prior to planned graduation.

To complete the MATSCI Honors program:

- Overall GPA of 3.5 or higher (as calculated on the unofficial transcript) at graduation.
- Complete at least three quarters of research with a minimum of 9 units of MATSCI 150 for a letter grade (students may petition out of unit requirement with faculty adviser approval). All quarters must focus on the same topic. Maintain the same faculty adviser throughout, if possible.
- Present either a poster or oral presentation of thesis work at a Stanford event or, at the faculty adviser's discretion, in a comparable public event.
- Submit final drafts of an honors thesis to two faculty readers (one must be your research adviser, and one must be an MSE faculty member/SoE Academic Council member) at least one quarter prior to graduation. Both must approve the thesis by completing the signature page (https://mse.stanford.edu/student-resources/forms/undergraduate).
- Submit to MATSCI student services (Durand 113) one copy of the honors thesis and signed signature page (in electronic or physical form) at least one quarter prior to graduation.

Materials Science and Engineering (MATSCI) Minor

A minor in Materials Science and Engineering allows interested students to explore the role of materials in modern technology and to gain an understanding of the fundamental processes that govern materials behavior.

The following courses fulfill the minor requirements:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 50</td>
<td>Introduction to Materials Science, Nanotechnology Emphasis</td>
<td>4</td>
</tr>
</tbody>
</table>

For additional information and sample programs see the Handbook for Undergraduate Engineering Programs (http://ughb.stanford.edu).
Materials Science and Engineering

Select three of the following core courses:

- MATSCI 201 Applied Quantum Mechanics I 3
- MATSCI 202 Materials Chemistry 3
- MATSCI 203 Atomic Arrangements in Solids 3
- MATSCI 204 Thermodynamics and Phase Equilibria 3
- MATSCI 205 Waves and Diffraction in Solids 3
- MATSCI 206 Defects in Crystalline Solids 3
- MATSCI 207 Rate Processes in Materials 3
- MATSCI 208 Mechanical Properties of Materials 3
- MATSCI 209 Electronic and Optical Properties of Solids 3

Total core course units 9

Select three of the following lab courses:

- MATSCI 171 Energy Materials Laboratory 3
- MATSCI 172 X-Ray Diffraction Laboratory 3
- MATSCI 173 Mechanical Behavior Laboratory 3
- MATSCI 174 Electronic and Photonic Materials and Devices Laboratory 3
- MATSCI 175 Nanoscale Materials Physics Computation Laboratory 3

One laboratory requirement may be fulfilled by taking lab courses from another engineering department.

Total lab course units 9

TOTAL 18

Select four of the following core courses:

- MATSCI 201 Applied Quantum Mechanics I 3
- MATSCI 202 Materials Chemistry 3
- MATSCI 203 Atomic Arrangements in Solids 3
- MATSCI 204 Thermodynamics and Phase Equilibria 3
- MATSCI 205 Waves and Diffraction in Solids 3
- MATSCI 206 Defects in Crystalline Solids 3
- MATSCI 207 Rate Processes in Materials 3
- MATSCI 208 Mechanical Properties of Materials 3
- MATSCI 209 Electronic and Optical Properties of Solids 3
- MATSCI 210 Organic and Biological Materials 3

Total core course units 12

Select two of the following lab courses:

- MATSCI 171 Energy Materials Laboratory 3
- MATSCI 172 X-Ray Diffraction Laboratory 3
For instance, 3-4 laboratory reports are required for a 3-unit laboratory for most students. The report should reflect the number of units taken. As a general guideline, a 6-9 units of master’s research is a normal load and report a directed research.

The M.S. thesis report must be approved and signed off by two faculty members. In general, one is student's research adviser, if adviser is a non MATSCI faculty member, a second MATSCI faculty is required to sign off on the thesis report. Consult with student services manager about faculty criteria, and requirements. Three copies of M.S. thesis report in final format should be submitted to two faculty advisers, and at least one from a Materials Science faculty member belonging to the Academic Council. The M.S. to Ph.D. petition to transfer should be submitted to the student services manager by June of the first year in the M.S. program. Students who wish to submit a petition to the Ph.D. degree, should plan to complete at least six of the MATSCI 200 series courses below the 100 level offering.

Master's Thesis Report

Students wishing to take this option must consult with a MATSCI faculty member initially. Out of the 45 units M.S. degree requirements, 6-15 units may be taken in Materials Science Master’s research by enrolling in MATSCI 200. Students using 15 units of research toward the degree must participate in a more complex and demanding research project than those using lesser units.

The M.S. thesis report must be approved and signed off by two faculty members. In general, one is student's research adviser, if adviser is a non MATSCI faculty member, a second MATSCI faculty is required to sign off on the thesis report. Consult with student services manager about faculty criteria, and requirements. Three copies of M.S. thesis report in final format should be submitted to two faculty advisers, and at least one from a Materials Science faculty member belonging to the Academic Council. The M.S. to Ph.D. petition to transfer should be submitted to the student services manager by June of the first year in the M.S. program. Students who wish to submit a petition to the Ph.D. degree, should plan to complete at least six of the MATSCI 200 series courses below the 100 level offering.

As a general guide line, a 6-9 units of master’s research is a normal load for most students. The report should reflect the number of units taken. For instance, 3-4 laboratory reports are required for a 3-unit laboratory course. Accordingly, the level expected for 9 units of research would be at least equivalent to three such courses.

Students are advised to submit their thesis draft to faculty adviser readers by the end of fifth week of the quarter in which the units are to be assigned to allow time for faculty comments and revisions. A collated final version of the thesis report should be submitted to faculty and student services manager by last day of classes of student’s graduation quarter. The appropriate grade for satisfactory progress in the research project prior to submission of the final report is ‘N’ (continuing); the ‘S’ (Satisfactory) final grade is given only when the report is fully approved and signed off by both faculty members.

In cases where students decide to pursue research after the initial program submission deadline, they should submit a revised M.S. Program Proposal at least two quarters before the degree is granted. The total units taken in Materials Science must be approved and must meet the same admissions requirements as full-time graduate students. For information regarding the Honors Cooperative Program, see Graduate Programs in the "School of Engineering (http://exploredegrees.stanford.edu/schoolofengineering)" section of this bulletin.

Petition Process for Transfer from M.S. to Ph.D. Degree Program

Students admitted to graduate programs are admitted specifically into either the terminal M.S. or the Ph.D. program. A student admitted to the terminal M.S. program should not assume admission to the Ph.D. program. Admission to the Ph.D. program is required for a student to be eligible to work towards the Ph.D. degree.

A student in the terminal M.S. program may petition to be admitted to the Ph.D. program by filing an M.S. to Ph.D petition form. Petition must include a one-page statement of purpose explaining why the student wishes to transfer to the Ph.D. program, most recent unofficial transcript, and must meet the same admissions requirements as full-time graduate students. For information regarding the Honors Cooperative Program, see Graduate Programs in the "School of Engineering (http://exploredegrees.stanford.edu/schoolofengineering)" section of this bulletin.
Coterminal Master of Science Program in Materials Science and Engineering

Stanford undergraduates who wish to continue their studies for the Master of Science degree in Materials Science and Engineering through the Coterminal program may apply for admission after they have earned 120 units toward graduation (UTG) as shown on the undergraduate unofficial transcript. Applicants must submit their application no later than eight weeks before the start of the quarter in which they wish to graduate. The application must give evidence that student possesses a potential for strong academic performance at the graduate level. Scores from the Graduate Record Examination (GRE) General Test must be reported before action can be taken on an application.

Materials science is a highly integrated and interdisciplinary subject, therefore students of any engineering or science undergraduate major are encouraged to apply.

Information and other requirements pertaining to the Coterminal program in Materials Science and Engineering may be obtained from the department's student services manager.

University Coterminal Requirements

Coterminal master's degree candidates are expected to complete all master's degree requirements as described in this bulletin. University requirements for the coterminal master's degree are described in the “Coterminal Master's Program (http://exploredegrees.stanford.edu/cotermdegrees)” section. University requirements for the master's degree are described in the "Graduate Degrees (http://exploredegrees.stanford.edu/graduatedegrees/#masterstext)" section of this bulletin.

After accepting admission to this coterminal master's degree program, students may request transfer of courses from the undergraduate to the graduate career to satisfy requirements for the master's degree. Transfer of courses to the graduate career requires review and approval of both the undergraduate and graduate programs on a case by case basis.

In this master’s program, courses taken during or after the first quarter of the sophomore year are eligible for consideration for transfer to the graduate career; the timing of the first graduate quarter is not a factor. No courses taken prior to the first quarter of the sophomore year may be used to meet master's degree requirements.

Course transfers are not possible after the bachelor's degree has been conferred.

The University requires that the graduate adviser be assigned in the student's first graduate quarter even though the undergraduate career may still be open. The University also requires that the Master's Degree Program Proposal be completed by the student and approved by the department by the end of the student's first graduate quarter.

Engineer in Materials Science Engineering

The University's basic requirements for the degree of Engineer are outlined in the “Graduate Degrees” section of this bulletin.

A student wishing to enter the Engineer program must have completed the requirements of the M.S. in Materials Science and Engineering, and must file a petition requesting admission to the program, stating the type of research to be done and the proposed supervising professor. Once approved, the Application for Candidacy must be submitted to the department's student services manager by the end of the second quarter in the Engineer program. Final changes in the Application for Candidacy form must be submitted no later than one academic quarter prior to degree conferral.

The 90-unit program must include 9 units of graduate courses in Materials Science with a MATSCI subject code (no research units, seminars, colloquia, and MATSCI 400 Participation in Materials Science Teaching, Participation in Teaching) beyond the requirements for the M.S. degree, and additional research or other units to meet the 90-unit University minimum requirement. A grade point average (GPA) of 3.0 must be maintained for all degree course work taken at Stanford.

The Engineer thesis must be approved and signed off by two Academic Council faculty members, one must be a MATSCI faculty member.

Doctor of Philosophy in Materials Science Engineering

The University's basic requirements for the Ph.D. degree are outlined in the "Graduate Degrees (http://exploredegrees.stanford.edu/graduatedegrees)" section of this bulletin. The GRE (Graduate Record Examination) is required for admission to the Ph.D. program.

The Ph.D. degree is awarded after the completion of a minimum of 135 units of graduate work as well as satisfactory completion of any additional University requirements. Degree requirements for the department are as follows:

Core Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATSCI 201</td>
<td>3</td>
</tr>
<tr>
<td>MATSCI 202</td>
<td>3</td>
</tr>
<tr>
<td>MATSCI 203</td>
<td>3</td>
</tr>
<tr>
<td>MATSCI 204</td>
<td>3</td>
</tr>
<tr>
<td>MATSCI 205</td>
<td>3</td>
</tr>
<tr>
<td>MATSCI 206</td>
<td>3</td>
</tr>
<tr>
<td>MATSCI 207</td>
<td>3</td>
</tr>
<tr>
<td>MATSCI 208</td>
<td>3</td>
</tr>
<tr>
<td>MATSCI 209</td>
<td>3</td>
</tr>
<tr>
<td>MATSCI 210</td>
<td>3</td>
</tr>
</tbody>
</table>

Five Elective Graduate Technical Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATSCI 230</td>
<td>15</td>
</tr>
</tbody>
</table>

Materials Science Colloquia

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATSCI 299</td>
<td>3</td>
</tr>
</tbody>
</table>

Research & Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 Units of MatSci 300: Ph.D. Research</td>
<td>75</td>
</tr>
<tr>
<td>12 Units of Electives</td>
<td>12</td>
</tr>
</tbody>
</table>

1. At least six of these courses must be taken during the first year (including MATSCI 203 Atomic Arrangements in Solids, MATSCI 204 Thermodynamics and Phase Equilibria, and MATSCI 207 Rate Processes in Materials). All core courses must be completed for a letter grade, and taken during the first two years in the program.

2. Elective technical courses must be in areas related directly to student’s research interest in Materials Science and Engineering, and may not include MATSCI 230 Materials Science Colloquium, MATSCI 299 Practical Training, MATSCI 300 Ph.D. Research or MATSCI 400 Participation in Materials Science Teaching. All courses must be completed for a letter grade.

3. Materials Science & Engineering Ph.D. students are required to take MATSCI 230 Materials Science Colloquium during each quarter of their first year. Attendance is required, roll is taken, and more than two absences results to an automatic "No Pass" grade.
May include other engineering courses, or MATSCI 400 Participation in Materials Science Teaching or a maximum of 3 units MATSCI 299 Practical Training

- Students must consult with their academic adviser on Ph.D. course selection planning. For students with a non-MATSCI research adviser, the MATSCI academic/co-adviser must also approve the list of proposed courses. Any proposed deviations from the requirements can only be considered by petition.
- Ph.D. students are required to apply for and have conferred a MATSCI M.S. degree normally by the end of their third year of studies. A Graduate Program Authorization Petition (in Axess) and an M.S. Program Proposal [https://mse.stanford.edu/student-resources/forms/masters] must be submitted after taking the Ph.D. qualifying examination.
- A departmental oral qualifying examination must be passed by the end of January of the second year. A grade point average (GPA) of 3.5 in core courses MATSCI 201-210 is required for admission to the Ph.D. qualifying examination. Students who have passed the Ph.D. qualifying examination are required to complete the Application for Candidacy to the Ph.D. degree by June of the second year after passing the qualifying examination. Final changes in the Application for Candidacy form must be submitted no later than one academic quarter prior to the Terminal Graduate Registration (TGR) Status.
- Maintain a cumulative GPA of 3.0 in all courses taken at Stanford.
- Students must present the results of their research dissertation at the University Ph.D. oral defense examination.
- Current students subject to either this set of requirements or a prior set must obtain the approval of their adviser before filing a revised program sheet, and should as far as possible adhere to the intent of the new requirements.
- Students may refer the list of "Advanced Specialty Courses and Cognate Courses" provided below as guidelines for their selection of technical elective units. As noted above, academic adviser approval is required.
- At least 90 units must be taken in residence at Stanford. Students entering with an M.S. degree in Materials Science from another university may request to transfer up to 45 units of equivalent work toward the total of 135 Ph.D. degree requirement units.
- Students may propose a petition for exemption from a required core course if they have taken a similar course in the past. To petition, a student must consult and obtain academic and/or research adviser approval, and consent of the instructor of the proposed core course. To assess a student's level of knowledge, the instructor may provide an oral or written examination on the subject matter. The student must pass the examination in order to be exempt from core course requirement. If the petition is approved, the student is required to complete the waived number of units by taking other relevant upper level MATSCI courses.

Advanced Specialty Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEMENG 310</td>
<td>Microhydrodynamics</td>
<td>3</td>
</tr>
<tr>
<td>CHEMENG 355</td>
<td>Advanced Biochemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ME 381</td>
<td>Orthopaedic Bioengineering</td>
<td>3</td>
</tr>
<tr>
<td>ME 457</td>
<td>Fluid Flow in Microdevices</td>
<td>3</td>
</tr>
<tr>
<td>MATSCI 225</td>
<td>Biochips and Medical Imaging</td>
<td>3</td>
</tr>
<tr>
<td>MATSCI 380</td>
<td>Nano-Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>MATSCI 381</td>
<td>Biomaterials in Regenerative Medicine</td>
<td>3</td>
</tr>
<tr>
<td>Electronic Materials Processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE 212</td>
<td>Integrated Circuit Fabrication Processes</td>
<td>3</td>
</tr>
<tr>
<td>EE 216</td>
<td>Principles and Models of Semiconductor Devices</td>
<td>3</td>
</tr>
</tbody>
</table>

Ph.D. Minor in Materials Science and Engineering

The University's basic requirements for the Ph.D. minor are outlined in the "Graduate Degrees [http://exploredegrees.stanford.edu/graduatedegrees/#doctoraltext]" section of this bulletin. A minor requires 20 units of graduate work of quality and depth at the 200-level or higher in the Materials Science and Engineering course offering. Courses must be taken for a letter grade. The proposed list of courses must be approved by department's advanced degree committee. Individual programs must be submitted to the student services manager at least one quarter prior to...
to the quarter of the degree conferral. None of the units taken for the Ph.D. minor may overlap with any M.S. degree units.

Graduate Advising Expectations

The Department of Materials Science and Engineering is committed to providing academic advising in support of graduate student scholarly and professional development. When most effective, this advising relationship entails collaborative and sustained engagement by both the adviser and the advisee. As a best practice, advising expectations should be periodically discussed and reviewed to ensure mutual understanding. Both the adviser and the advisee are expected to maintain professionalism and integrity.

Faculty advisers guide students in key areas such as selecting courses, designing and conducting research, developing of teaching pedagogy, navigating policies and degree requirements, and exploring academic opportunities and professional pathways.

Graduate students are active contributors to the advising relationship, proactively seeking academic and professional guidance and taking responsibility for informing themselves of policies and degree requirements for their graduate program.

For a statement of University policy on graduate advising, see the "Graduate Advising (http://exploredegrees.stanford.edu/graduatedegrees/#advisingandcredentialstext)" section of this bulletin.

M.S. Advising

The Department of Materials Science and Engineering (MSE) is committed to providing academic advising in support of its M.S. students’ education and professional development. When most effective, this advising relationship entails collaborative engagement by both the adviser and the advisee. As a best practice, advising expectations should be discussed and reviewed to ensure mutual understanding. Both the adviser and the advisee are expected to maintain professionalism and integrity.

At the start of graduate study, each student is assigned a master’s program adviser, a member of department faculty who provides guidance in course selection and in exploring academic opportunities and professional pathways. Usually, the same faculty member serves as program adviser for the duration of master’s study, but the handbook describes a process for formal adviser changes.

The MSE Graduate Handbook (https://mse.stanford.edu/student-resources) provides information and suggested timelines for advising meetings; however, ideally, the program adviser and student meet at least three times during the student’s two-year degree. The first meeting between program adviser and student should occur once in Autumn Quarter of the first year to discuss the student’s goals and objectives. Student and program adviser meet again in Spring Quarter to discuss the student’s course plans and goals for the next academic year. The last meeting should be at the start of the quarter before the student’s final quarter of study, and the program adviser and student review the student’s coursework taken and the final quarter of study courses the student intends to take. It is expected that the student initiates these meetings.

In addition, the faculty Director of Graduate Studies (DGS) meets all the master’s students during the MSE Orientation at the start of the first year and is available during the academic year by email and during office hours. The DGS or program adviser may initiate a meeting with any student they feel could be in academic distress.

The MSE student services team is also an important part of the master’s advising team. They inform students and advisers about University and department requirements, procedures, and opportunities, and maintain the official records of advising assignments and approvals.

Finally, the department believes that graduate students are active contributors to the advising relationship, proactively seeking academic and professional guidance and taking responsibility for informing themselves of policies and degree requirements for their graduate program. As such, it expects students to read the monthly MSE Updates newsletter, which provides deadlines, web links, and other valuable information on graduate degree progress.

Ph.D. Advising

The Department of Materials Science and Engineering (MSE) is committed to providing academic advising in support of its Ph.D. students’ education and professional development. When most effective, this advising relationship entails collaborative engagement by both the adviser and the advisee. As a best practice, advising expectations should be discussed and reviewed to ensure mutual understanding. Both the adviser and the advisee are expected to maintain professionalism and integrity.

Faculty advisers guide students in key areas such as selecting courses, designing and conducting research, developing teaching pedagogy, navigating policies and degree requirements, and exploring academic opportunities and professional pathways. The MSE Graduate Handbook (https://mse.stanford.edu/student-resources) provides information and suggested timelines for advising meetings in the different stages of the doctoral program, and this timeline is reviewed in the MSE Orientation held at the start of a student’s doctoral program and at the annual MSE Graduate Updates meeting.

Ph.D. students are initially assigned a doctoral program adviser based on the interests expressed in their application. This faculty member provides initial guidance in course selection, assists students in exploring academic opportunities and professional pathways, and aids in identifying doctoral research opportunities. MSE does not require formal lab rotations, but students are strongly encouraged to explore research activities in two or three labs during their first academic year.

Students identify their doctoral research adviser prior to the end of February of their first year of study. The research supervisor assumes primary responsibility for the future direction of the student, taking on the roles previously filled by the program adviser, and ultimately directs the student’s dissertation. Most students find an adviser among the primary faculty members of the department. However, the research adviser may be a faculty member from another Stanford department who is familiar with supervising doctoral students and able to provide both research advising and funding for the duration of the doctoral program. When the research adviser is from outside the department, the student must also identify a department co-adviser from the department’s primary faculty to provide guidance on departmental requirements, core coursework, and opportunities.

The faculty Director of Graduate Studies (DGS) meets with all the doctoral students during the MSE Orientation at the start of the first year and is available during the academic year by email and during office hours. The DGS or research adviser/co-adviser may initiate a meeting with any student they feel could be in academic or research distress.

The MSE student services team is also an important part of the doctoral advising team: they inform students and advisers about University and department requirements, procedures, and opportunities, and they maintain the official records of advising assignments and approvals. Students are encouraged to talk with the DGS and the student services office as they consider adviser selection, or for guidance in working with their adviser(s). Student services can discuss how a student can change program/research adviser(s), declare their Dissertation Reading
Committee/Oral Exam Committee, and process for filing important paperwork.

The department’s doctoral students are active contributors to the advising relationship, proactively seeking academic and professional guidance and taking responsibility for informing themselves of policies and degree requirements for their graduate program. As such the department expects students to read the monthly MSE Updates newsletter which provides deadlines, web links, and other valuable information on graduate degree progress.

Chair: Alberto Salleo

Director of Graduate Studies: Alberto Salleo

Director of Undergraduate Studies: Nicholas A. Melosh

Associate Chair: Shan Xiang Wang

Professors: Mark L. Brongersma, Bruce M. Clemens, Yi Cui, Reinhold H. Dauskardt, Thomas Devereaux, Persis S. Drell, Paul C. McIntyre, Nicholas A. Melosh, Friedrich B. Prinz, Alberto Salleo, Robert Sinclair, Shan X. Wang

Associate Professors: William Chueh, Jennifer A. Dionne, Sarah C. Heilshorn, Aaron M. Lindenberg, Evan J. Reed, Andrew Spakowitz

Assistant Professors: Eric Appel, Guosong Hong

Lecturers: Ann Marshall, Arturas Vailionis

Adjunct Professors: Khalil Amine, Geraud Dubois, Annika Enejder, Turgut Gur, Bryce Meredig, Hendrik Ohldag

Cognate Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA 252</td>
<td>Techniques of Failure Analysis</td>
<td>3</td>
</tr>
<tr>
<td>AA 256</td>
<td>Mechanics of Composites</td>
<td>3</td>
</tr>
<tr>
<td>APPHYS 270</td>
<td>Magnetism and Long Range Order in Solids</td>
<td>3</td>
</tr>
<tr>
<td>APPHYS 272</td>
<td>Solid State Physics</td>
<td>3</td>
</tr>
<tr>
<td>APPHYS 273</td>
<td>Solid State Physics II</td>
<td>3</td>
</tr>
<tr>
<td>CHEMENG 310</td>
<td>Microhydrodynamics</td>
<td>3</td>
</tr>
<tr>
<td>CHEMENG 345</td>
<td>Fundamentals and Applications of Spectroscopy</td>
<td>3</td>
</tr>
<tr>
<td>CHEMENG 355</td>
<td>Advanced Biochemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EE 212</td>
<td>Integrated Circuit Fabrication Processes</td>
<td>3</td>
</tr>
<tr>
<td>EE 216</td>
<td>Principles and Models of Semiconductor Devices</td>
<td>3</td>
</tr>
<tr>
<td>EE 222</td>
<td>Applied Quantum Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>EE 223</td>
<td>Applied Quantum Mechanics II</td>
<td>3</td>
</tr>
<tr>
<td>EE 228</td>
<td>Basic Physics for Solid State Electronics</td>
<td>3</td>
</tr>
<tr>
<td>EE 311</td>
<td>Advanced Integrated Circuits Technology</td>
<td>3</td>
</tr>
<tr>
<td>EE 312</td>
<td>Integrated Circuit Fabrication Laboratory</td>
<td>3-4</td>
</tr>
<tr>
<td>EE 316</td>
<td>Advanced VLSI Devices</td>
<td>3</td>
</tr>
<tr>
<td>EE 327</td>
<td>Properties of Semiconductor Materials</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 50</td>
<td>Introduction to Materials Science, Nanotechnology Emphasis</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 50E</td>
<td>Introduction to Materials Science, Energy Emphasis</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 50M</td>
<td>Introduction to Materials Science, Biomaterials Emphasis</td>
<td>4</td>
</tr>
<tr>
<td>ME 329</td>
<td>Mechanical Analysis in Design</td>
<td>3</td>
</tr>
<tr>
<td>ME 335A</td>
<td>Finite Element Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ME 335B</td>
<td>Finite Element Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ME 335C</td>
<td>Finite Element Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ME 345</td>
<td>Fatigue Design and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ME 381</td>
<td>Orthopaedic Bioengineering</td>
<td>3</td>
</tr>
<tr>
<td>ME 455</td>
<td>Complex Fluids and Non-Newtonian Flows</td>
<td>3</td>
</tr>
<tr>
<td>ME 457</td>
<td>Fluid Flow in Microdevices</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS 230</td>
<td>Graduate Quantum Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS 231</td>
<td>Graduate Quantum Mechanics II</td>
<td>3</td>
</tr>
</tbody>
</table>

Stanford Bulletin 2018-19