SCIENCE, TECHNOLOGY, & SOCIETY (STS)

STS 1. The Public Life of Science and Technology. 4 Units.
The course focuses on key social, cultural, and values issues raised by
contemporary scientific and technological developments through the
STS interdisciplinary lens by developing and applying skills in three areas:
(a) The historical analysis of contemporary global matters (e.g., spread
of technologies; climate change response); (b) The bioethical reasoning
around health issues (e.g., disease management; privacy rights); and (c)
The sociological study of knowledge (e.g., intellectual property, science
publishing). A discussion section is required and will be assigned the first
week of class.
Same as: CSRE 1T

STS 123. Making of a Nuclear World: History, Politics, and Culture. 4
Units.
Nuclear technology has shaped our world through its various applications
(e.g., weapons, energy production, medicine) and accidents and disasters
(e.g., Chernobyl, Three Mile Island, Fukushima). This course will examine
the development of nuclear technology and its consequences to
politics and culture at the global, national, regional and local levels from
interdisciplinary perspectives. Some of the key questions addressed
are: How did different countries and communities experience and
respond to the 1945 bombings of Hiroshima and Nagasaki? How did such experiences affect the later development of the technology in different
national contexts? How have nuclear tests and disasters change the
ways in which risks are understood and managed globally and locally?
What kinds of political activism, international arrangements, and cultural
tropes and imageries emerged in response to nuclear technology? We
explore these questions through key works and recent studies in history,
anthropology, sociology, and science and technology studies, as well as
through films and literature.

STS 131. Science, Technology, and Environmental Justice. 4 Units.
The Bay Area is renowned for its technological innovations and
progressive politics, including environmental justice activism. This
course explores the multifaceted intersections of science, technology,
and environmental issues, in the Bay Area and beyond. Throughout,
students investigate the politics of place, with an eye to inequalities of
race, class, gender, generation, and citizenship. Topics include: histories of
environmentalism; socio-technological systems; urban and regional
planning; public health and biomedicine; food systems; climate change;
innovation ecosystems; undone science.

STS 136. Anthropological Inquiries: Cold War, Nuclear Testing, Energy,
and Human Rights. 4 Units.
The atomic age has remade communities, public cultures, and the
consciousness of individuals all across the globe. What are the political,
social, cultural, and scientific legacies of nuclear testing and disasters?
Think: Hiroshima, Nagasaki, Chernobyl, Fukushima and Soviet, French,
and American nuclear weapons testing. But also think: nuclear energy
production as a "forward thinking" solution to carbon emissions.
Indeed, the military and peaceful use of the atom is a transnational
phenomenon with local manifestations and consequences, but what are the social implications of the nuclear age? How do scientists and
institutions attempt to manage and control risk? This class explores
these questions by studying the aftermath of the nuclear age through
full-length ethnographies, journal articles, and film. Each week we will
investigate the contested nature of this topic through a diversity of
perspectives, past and present. This is a survey course, designed for
advanced placement high school, undergraduate, and graduate students.

STS 151. The Future of Information. 4 Units.
As information has a fascinating history (see HISTORY 5A), so it
possesses a promising if concerning future. Through lecture,
demonstration, online modules, and in-class web-work, this course will
provide students with advanced strategies in (a) identifying sources and
tools for advancing the quest for information; (b) assessing elements of
trust, authority, and chicanery in the provision of information; (c)
recognizing the economic and legal structures shaping information
sources, services, and rights; and (d) discovering who is behind what
information. With a focus on the info-worlds of journalism, learning,
governance, students will acquire and practice the forensic skills and web
savvy of fact-checkers and investigative reporters, activists and scholars.
Here’s a class set to determine the future course of information. The
class will be a hybrid course, combining in-class delivery of materials,
with a number of classes involving students taking online modules (at
their convenience) that are designed to teach information literacy skills.
Same as: EDUC 151

STS 166. Knowledge and Information Infrastructures. 3-4 Units.
This course introduces historical, theoretical, and comparative
perspectives on knowledge and information systems from the medieval
world to the present. Cases include libraries, meteorology, climate
science, the Internet, the World Wide Web, and social science data
systems. It theorizes how infrastructures form, how they change,
and how they shape (and are shaped by) social systems. The course
explores the challenges to modern knowledge infrastructures, such as
crowdsourcing, citizen science, and alternative and bogus knowledge.
Same as: HISTORY 242D

STS 181. Techno-metabolism: Technology, Society, and the
Anthropocene. 3-4 Units.
In the Anthropocene epoch, humanity has become a geological force. As
the sum of all technological systems and their human components, the
technosphere metabolizes energy, materials, and information. Techno-
metabolism’s waste products- greenhouse gases, microplastics, nuclear
waste, etc. - are transforming the biosphere and the geosphere, with
radically different effects on disparate peoples and places. Scientists,
historians, and others have proposed new ways to conceptualize techno-
metabolism in order to reduce energy requirements and material waste.
Meanwhile, "data exhaust" - the "waste" data generated by individual
activity, from web searches to Facebook and Instagram - is increasingly
"recycled" to detect patterns, trends, and individual preferences. In this
project-centered course, students will seek creative ways to visualize,
understand, and change the interplay of energy, materials, information,
and waste. Assignments include reading logs and a term-long group
project.

STS 190. Issues in Technology and the Environment. 4 Units.
Humans have long shaped and reshaped the natural world with
technologies. Once a menacing presence to conquer or an infinite
reserve for resources, nature is now understood to require constant
protection from damage and loss. This course will examine humanity’s
varied relationship with the environment, with a focus on the role
of technology. Topics include: industrialization, modernism, diversity in
environmentalism, environmental justice, global-local tensions, nuclear
technology, and biotechnology. Students will explore theoretical and
methodological approaches in STS and conduct original research that
addresses this human-nature-technology nexus. Enrollment limited to
juniors and seniors, or with consent of instructor. First week attendance
mandatory.
STS 191. Doing STS: Introduction to Research. 4 Units.
This seminar introduces key analytical approaches and methodologies in STS, as well as basic tools for designing and conducting original research in STS. Students survey a series of influential studies in STS; identify productive questions of their own interest; and explore how to pursue them through strong research design. By completing smaller writing assignments throughout the quarter, you will produce a fully developed research proposal as final assignment. This final proposal can serve as an honors prospectus for students who seek to participate in the STS honors program. First week attendance mandatory.

STS 191W. Doing STS: Introduction to Research. 4 Units.
This seminar introduces key analytical approaches and methodologies in STS, as well as basic tools for designing and conducting original research in STS. Students survey a series of influential studies in STS; identify productive questions of their own interest; and explore how to pursue them through strong research design. By completing smaller writing assignments throughout the quarter, you will produce a fully developed research proposal as final assignment. This final proposal can serve as an honors prospectus for students who seek to participate in the STS honors program. First week attendance mandatory.

STS 199. Independent Study. 1-5 Unit.
Every unit of credit is understood to represent three hours of work per week per term and is to be agreed upon between the student and the faculty member. Instructor consent required. Please contact the department for a permission number.

STS 199A. Curricular Practical Training. 1 Unit.
Students obtain internship in a relevant research or industrial activity to enhance their professional experience consistent with their degree program and area of concentration. Prior to enrolling students must get internship approved by the STS Program Director. At the end of the quarter, a one-page final report must be supplied documenting work done and relevance to degree program. Meets the requirements for Curricular Practical Training for students on F-1 visas. Student is responsible for arranging own internship. Limited to declared STS majors only. Course may be repeated twice. Instructor consent required. Please contact the department for a permission number.

STS 199J. Editing a Science Technology and Society Journal. 1-2 Unit.
The Science Technology and Society (STS) Program has a student journal, Intersect, that has been publishing STS student papers for a number of years. This course involves learning about how to serve as an editor of a peer-reviewed journal, while serving as one of the listed editors of Intersect. Entirely operated online, the journal uses a work-flow management to help with the submission process, peer-review, editing, and publication. Student editors learn by being involved in the publishing process, from soliciting manuscripts to publishing the journal’s annual issue, while working in consultation with the instructor. Students will also learn about current practices and institutional frameworks around open access and digital publishing.

STS 200A. Food and Society: Politics, Culture and Technology. 5 Units.
This course will examine how politics, culture, and technology intersect in our food practices. Through a survey of academic, journalistic, and artistic works on food and eating, the course will explore a set of key analytical frameworks and conceptual tools in STS, such as the politics of technology, classification and identity, and nature/culture boundaries. The topics covered include: the industrialization of agriculture; technology and the modes of eating (e.g., the rise of restaurants); food taboos; globalization and local foodways; food and environmentalism; and new technologies in production (e.g., genetically modified food). Through food as a window, the course intends to achieve two broad intellectual goals. First, students will explore various theoretical and methodological approaches in STS. In particular, they will pay particular attention to the ways in which politics, culture, and technology intersect in food practices. Second, student will develop a set of basic skills and tools for their own critical thinking and empirical research, and design and conduct independent research on a topic related to food. First class attendance mandatory. STS majors must have Senior status to enroll in this Senior Capstone course.

STS 200D. Predictive Technologies of Text. 5 Units.
This course will examine conventions and patterns in the history of recorded human communication to consider how future technologies of text (methods of recording, modes of information exchange, devices for reading text) might develop. All forms of communication from the earliest times to today belong to discrete, discernible systems, whether that's writing, or representational (art, music, binary code) or paralinguistic (gesture, radio-waves, the stars) and all, it might be argued, follow similar biographies that we'll describe, authenticate, and model predictively. Same as: ENGLISH 184G

STS 200F. Sociology of Innovation and Invention. 5 Units.
This course examines social, cultural, and economic factors that foster novelty. We will study a wide array of historical contexts, from the Renaissance to the present day, in which clusters of related innovations transformed the way things are done. We ask when do such innovations cascade out and produce social inventions that, for good and bad, create profound changes in how things are done, leading to new forms of organizations and new categories of people. Seminar/lecture format, reading intensive, final term paper. Prerequisite: admission to the course is restricted to declared STS seniors and is by application only. Email Emily Van Poetsch (emilyvp@stanford.edu) for an application. Applications must be submitted by 5pm on November 1st.

STS 200H. Ethics, Science, & Technology. 4 Units.
Critical analysis of ethical issues raised by recent or emerging advances in science and engineering. Issues: privacy, intellectual property, design equity, the public interest, ethical responsibilities of technical practitioners, research ethics, and freedom of inquiry. Advances from fields such as IT, biotechnology, nanotechnology, neurotechnology, construction technology, and transport technology. Seminar limited to 20 senior STS majors. Prerequisite: a course in ethics or permission of the instructor.

STS 200K. Sciences of Learning. 4 Units.
Understanding the process of learning has enticed and eluded scientists for generations. Abetted by the rise of massive open online courses (MOOCs), learning has attracted new cadres of researchers and stars from scientists in adjacent fields, as well as new forms of financial support and visibility. This seminar investigates the recent dynamics of learning science as a case study in the politics of knowledge. Student projects will enable focused empirical inquiry.
STS 200L. Critique of Technology. 3-5 Units.
Informed citizens living in today’s world, and especially in Silicon Valley, should be able to formulate their own articulate positions about the role of technology in culture. The course gives students the tools to do so. Against the trend towards the thoughtless celebration of all things technological, we will engage in critique in the two senses of the term: as careful study of the cultural implications of technology and as balanced, argumentative criticism. Can technology make life more meaningful, society more fair, people smarter, and the world smaller? We will pay special attention to the insights that literature, and other arts, can offer for reframing digital culture. Selections by Latin American fiction writers (Cortázar, Zambra), philosophers and thinkers (Heidegger and Beller), as well as recent popular works of social commentary, such as You are not a Gadget, The Shallows, 24/7, and Present Shock. Taught in English.

STS 200M. Tobacco and Health in World History. 4-5 Units.
Cigarettes are the world’s leading cause of death—but how did we come into this world, where 6 trillion cigarettes are smoked every year? Here we explore the political, cultural, and technological origins of the cigarette and cigarette epidemic, using the tobacco industry’s 80 million pages of secret documents. Topics include the history of cigarette advertising and cigarette design, the role of the tobacco industry in fomenting climate change denial, and questions raised by the testimony of experts in court.

STS 200N. Funkentelechy: Technologies, Social Justice and Black Vernacular Cultures. 5 Units.
From texts to techne, from artifacts to discourses on science and technology, this course is an examination of how Black people in this society have engaged with the mutually constitutive relationships that endure between humans and technologies. We will focus on these engagements in vernacular cultural spaces, from storytelling traditions to music and move to ways academic and aesthetic movements have imagined these relationships. Finally, we will consider the implications for work with technologies in both school and community contexts for work in the pursuit of social and racial justice.
Same as: AFRICAAM 200N, EDUC 314

STS 200P. Leonardo’s World: Science, Technology and Art. 4-5 Units.
Leonardo da Vinci is emblematic of creativity and innovation. His art is iconic, his inventions legendary. His understanding of nature, the human body, and machines made him a scientist and engineer as well as an artist. This class explores the historical Leonardo, exploring his interests and accomplishments as a product of the society of Renaissance Italy. Why did this world produce a Leonardo? Students will contribute to a library exhibit for the 500th anniversary of Leonardo’s death in May 2019. This is an STS capstone seminar intended primarily for STS majors.

STS 200Q. Sociology of Science. 3-4 Units.
The sociology of science concerns the social structures and practices by which human beings interpret, use and create intellectual innovations. In particular we will explore the claim that scientific facts are socially constructed and ask whether such a characterization has limits. Course readings will concern the formation and decline of various thought communities, intellectual social movements, scientific disciplines, and broader research paradigms. A special focus will be placed on interdisciplinarity as we explore whether the collision of fields can result in new scientific advances. This course is suitable to advanced undergraduates and doctoral students.
Same as: EDUC 120, EDUC 320, SOC 330

STS 299. Advanced Individual Work. 1-5 Unit.
For students in the STS Honors program. Every unit of credit is understood to represent three hours of work per week per term and is to be agreed upon between the student and the faculty member. May be repeated for credit.