MECHANICAL ENGINEERING (ME)

ME 1. Introduction to Mechanical Engineering. 3 Units.
This course is intended to be the starting point for Mechanical Engineering majors. It will cover the concepts, engineering methods, and common tools used by mechanical engineers while introducing the students to a few interesting devices. We will discuss how each device was conceived, design challenges that arose, application of analytical tools to the design, and production methods. Main class sections will include lectures, demonstrations, and in-class group exercises. Lab sections will develop specific skills in freehand sketching and computational modeling of engineering systems. Prerequisites: Physics: Mechanics, and first quarter Calculus.

ME 101B. Visual Thinking. 4 Units.
Lecture/lab. Visual thinking and language skills are developed and exercised in the context of solving design problems. Exercises for the mind’s eye. Rapid visualisation and prototyping with emphasis on fluent and flexible idea production. The relationship between visual thinking and the creative process. Limited enrollment, attendance at first class required.

ME 102. Foundations of Product Realization. 3 Units.
Students develop the language and toolset to transform design concepts into tangible models/prototypes that cultivate the emergence of mechanical aptitude. Visual communication tools such as sketching, orthographic projection, and 2D/3D design software are introduced in the context of design and prototyping assignments. Instruction and practice with hand, powered, and digital prototyping tools in the Product Realization Lab support students’ implementation and iteration of physical project work. Project documentation, reflection, and in-class presentations are opportunities for students to find their design voice and practice sharing it with others.

ME 103. Product Realization: Design and Making. 3 Units.
Students will build on the foundation created in ME 102. ME 103 includes structured labs in machining, casting, forming and welding; carrying a single project through the entire design process from conceptualization through presentation of a customer ready prototype, creation of a project based portfolio, and an introduction to manufacturing processes.

ME 103D. Engineering Drawing and Design. 1 Unit.
Designed to accompany 203. The fundamentals of engineering drawing including orthographic projection, dimensioning, sectioning, exploded and auxiliary views, assembly drawings, and SolidWorks. Homework drawings are of parts fabricated by the student in the lab. Assignments in 203 supported by material in 103D and sequenced on the assumption that the student is enrolled in both courses simultaneously.

ME 104B. Designing Your Life. 2 Units.
The course employs a design thinking approach to help students develop a point of view about their life and career. The course focuses on an introduction to design thinking, the integration of work and worldview, and practices that support vocation formation. Includes seminar-style discussions, role-playing, short writing assignments, guest speakers, and individual mentoring and coaching. Open to juniors, seniors and 5th year coterminals, all majors. Additional course information at http://www.designingyourlife.org.

ME 104S. Designing Your Stanford. 2 Units.
DYS uses a Design Thinking approach to help Freshmen and Sophomores learn practical tools and ideas to make the most of their Stanford experience. Topics include the purpose of college, major selection, educational wayfinding, and innovating college outcomes - all applied through an introduction to Design Thinking. This seminar class incorporates small group discussion, in-class activities, field exercises, personal reflection, and individual coaching. Admission to be confirmed by email to Axess registered students prior to first class session. DYS uses a Design Thinking approach to help Freshmen and Sophomores learn practical tools and ideas to make the most of their Stanford experience. Topics include the purpose of college, major selection, educational wayfinding, and innovating college outcomes - all applied through an introduction to design mindsets and practices. This seminar class incorporates small group discussion, in-class activities, field exercises, personal reflection, and individual coaching. Additional course information at http://www.designingyourstanford.org.

ME 105. Designing for Impact. 3 Units.
This course will introduce the design thinking process and skills, and explore unique challenges of solving problems and initiating action for public good. Design skills such as need-finding, insight development, and prototyping will be learned through hands-on project work with a community partner and a particular emphasis on the elements required to be effective in the social sector. This is a Cardinal Course certified by the Haas Center for Public Service. ME 101B recommended.

ME 110. Design Sketching. 2 Units.
Freehand sketching, rendering, and design development. Students develop a design sketching portfolio for review by program faculty. May be repeated for credit.

ME 110B. Digital Design Principles and Applications. 2 Units.
Building upon foundation design principles, project-based individual / group exploration and critique facilitates a self-guided learning process, where analytical problem-solving approaches are cultivated through real-time implementation in digital tools. A series of diverse projects are brought together in conjunction with related student project portfolio development. Class Prerequisites: Students must have completed ME 110 with high levels of understanding, engagement. May be repeat for credit.

ME 112. Mechanical Systems Design. 3 Units.
How to design mechanical systems through iterative application of ideation, analysis, computation and prototyping. Design of custom mechanical components, selection of common machine elements, and use of electric motors and transmissions to meet performance, efficiency and reliability goals. Emphasis on systems with dynamic motion designed for low mass and energy use. New material through readings, interactive lectures and laboratories. Synthesis through independent and team-based design projects. Prerequisites: PHYSICS 41; ENGR 14; ME 80; ME 102; ME 103 or 203. Recommended: ENGR 15; CS 106A. Must have PRL pass.

ME 113. Mechanical Engineering Design. 4 Units.
Capstone course. Mechanical engineering design is experienced by students as they work on team projects. Prerequisites: 80, 101, 112, 203. Enrollment limited to ME majors. One of two available capstone design courses.
ME 115A. Introduction to Human Values in Design. 3 Units.
An intensive project-based class that introduces the central philosophy of the product design program. Students learn how to use the lens of human needs to innovate at the intersection of technical factors (feasibility), business factors (viability), and human values (desirability). Students work toward mastery of the human-centered design methodology through several real-world, team-based projects. Students gain fluency in designing solutions ranging from physical products, to digital interfaces, to services and experiences. Students are immersed in building their individual and team capacities around core design process and methods, and emerge with a strong foundation in needfinding, synthesis, ideation, rapid prototyping, user testing, iteration, and storytelling.

ME 115B. Product Design Methods. 4 Units.
Problem-finding, problem-solving, intermediate creativity methods and effective techniques for researching human factors and presenting product concepts. Individual- and team-based design projects emphasizing advanced visual thinking and prototyping skills.

ME 115C. Design and Business Factors. 3 Units.
Design and Business Factors: Introduces business concepts critical to determining the success of new products and services. Students will learn to estimate the cost of R&D for new product development. Using financial analysis, ROI, and tollgates to reduce development risk will be explored using case studies and simulations. Students will develop a bill of materials and a profit and loss statement for a sample product concept, prototype a design consultancy, and create a business proposal for a proposed new product company.

ME 120. History and Philosophy of Design. 3 Units.
Major schools of 19th- and 20th-century design (Arts and Crafts movement, Bauhaus, Industrial Design, and postmodernism) are analyzed in terms of their continuing cultural relevance. The relation of design to art, technology, and politics; readings from principal theorists, practitioners, and critics; recent controversies in industrial and graphic design, architecture, and urbanism. Enrollment limited to 65.

ME 123. Computational Engineering. 4 Units.
The design of wind turbines, biomedical devices, jet engines, electronic units, and almost every other engineering system, require the analysis of its flow and thermal characteristics to ensure optimal performance and safety. The continuing growth of computer power and the emergence of general-purpose engineering software has fostered the use of computational analysis as a complement to experimental testing. Virtual prototyping is a staple of modern engineering practice. This course is an introduction to Computational Engineering using commercial analysis codes, covering both theory and applications. Assuming limited knowledge of computational methods, the course starts with introductory training on the software, using a series of lectures and hands-on tutorials. We utilize the ANSYS software suite, which is used across a variety of engineering fields. Herein, the emphasis is on geometry modeling, mesh generation, solution strategy and post-processing for diverse applications. Using classical flow/thermal problems, the course develops the essential concepts of Verification and Validation for engineering simulations, n-providing the basis for assessing the accuracy of the results. Advanced concepts such as the use of turbulence models, user programming and automation for design are also introduced. The course is concluded by a project, in which the students apply the software to solve a industry-inspired problem.

ME 125. Visual Frontiers. 3 Units.
The student will learn how to use graphic design to communicate online, in person, and through printed matter. Fundamentals of visual communications will be applied to branding exercises, typographic studies, color explorations, drawing exercises, use of photography, and use of grid and layout systems.

ME 127. Design for Additive Manufacturing. 3 Units.
The manufacturing industry has long optimized for traditional processes of mass production. Additive manufacturing (AM) is poised to dramatically alter the field through its ability to create complex geometries with new and custom material properties, often without the investment associated with traditional tooling startup costs. Design engineers must understand both the capabilities and limitations of additive processes in order to realize the products of the future. This course will explore and compare various additive processes while students design and build projects in the Product Realization Lab, considering how additive manufacturing can augment traditional subtractive and transformative processes.

ME 128. Computer-Aided Product Realization. 3 Units.
Students will continue to build understanding of Product Realization processes and techniques concentrating on Computer Numerical Control (CNC) machines, materials, tools, and workholding. Students will gain an understanding of CNC in modern manufacturing and alternative methods and tools used in industry. Students will contribute to their professional portfolio by including projects done in class, both individually and in teams.

ME 12N. The Jet Engine. 3 Units.
Preference to freshmen. This seminar describes how a jet engine works with examples given from modern commercial and military engines. We then explore the technologies and sciences required to understand them including thermodynamics, turbomachinery, combustion, advanced materials, cooling technologies, and testing methods. Visits to research laboratories, examination of a partially disassembled engine, and probable operation of a small jet engine. Prerequisites: high school physics and preferably calculus.

ME 131A. Heat Transfer. 3 Units.
The principles of heat transfer by conduction, convection, and radiation with examples from the engineering of practical devices and systems. Topics include transient and steady conduction, conduction by extended surfaces, boundary layer theory for forced and natural convection, boiling, heat exchangers, and graybody radiative exchange. Prerequisites: 70, 30 (formerly listed at ENGR30). Recommended: intermediate calculus, ordinary differential equations.

ME 131B. Fluid Mechanics: Compressible Flow and Turbomachinery. 4 Units.
ME 132. Intermediate Thermodynamics. 4 Units.
A second course in engineering thermodynamics. Review of first and second laws, and the state principle. Extension of property treatment to mixtures. Chemical thermodynamics including chemical equilibrium, combustion, astrophysics, and nuclear power. Application of chemical potential as a driving force. Elementary electrochemical thermodynamics. Coursework includes both theoretical and applied aspects. Applications include modeling and experiments of propulsion systems (turbojet) and electricity generation (PEM fuel cell). Matlab is used for quantitative modeling of complex energy systems with real properties and performance metrics. Prerequisites: ME30 required, ME70 suggested, ME131 desirable.

ME 133. Intermediate Fluid Mechanics. 3 Units.
This course expands on the introduction to fluid mechanics provided by ME70. Topics include the conservation equations and finite volume approaches to flow quantification; engineering applications of the Navier-Stokes equations for viscous fluid flows; flow instability and transition to turbulence, and basic concepts in turbulent flows, including Reynolds averaging; boundary layers, including the governing equations, the integral method, thermal transport, and boundary layer separation; fundamentals of computational fluid dynamics (CFD); basic ideas of one-dimensional compressible flows.

ME 137. 3D Printing for Non-Technical Innovators. 1-3 Unit.
3D Printing is a method of creation that requires only some basic computer skills and a few rules of thumb. This class will allow students to discover for themselves the potential and limitations of 3D Printing through a build intensive design project. This course is an excellent option for anyone who ever wanted to prototype an invention, create a work of art, customize a product or just make something cool — and yet lacked the skills or a fully equipped workshop. Students may enroll for 1 unit to attend the lectures or 3 units for the complete project course. No prior technical knowledge needed. Note: Course material is targeted toward non-ME Design and non-PD majors. An application is required for the 3-unit course option. Please complete the online application by Friday, March 25th. The application is available on the course website: web.stanford.edu/class/me137.
Same as: ME 237

ME 139. Educating Young STEM Thinkers. 3-5 Units.
The course introduces students to the design thinking process, the national conversations about the future of STEM careers, and opportunities to work with middle school students and K-12 teachers in STEM-based after-school activities and intercession camps. The course is both theory and practice focused. The purpose is twofold; to provide reflection and mentoring opportunities for students to learn about pathways to STEM careers and to introduce mentoring opportunities with young STEM thinkers.
Same as: EDUC 139, EDUC 239, ME 231

ME 13N. The Great Principle of Similitude. 3 Units.
Basic rules of dimensional analysis were proposed by Sir Isaac Newton. Lord Rayleigh called the method of the Great Principle of Similitude. On its surface, it is a look at the relationships between physical quantities which uses their basic units. In fact, it is a powerful and formalized method to analyze complex physical phenomena, including those for which we cannot pose, much less solve, governing equations. The method is also valuable to engineers and scientist as it helps perform back-of-the-envelope estimates and derive scaling laws for the design of machines and processes. The principle has been applied successfully to the study of complex phenomena in biology, aerodynamics, chemistry, sports, astrophysics, and forensics, among other areas. In this course, the students will be provided with the basic tools to perform such flexible and powerful analyses. We will then review particular example analyses. These will include estimating the running speed of a hungry tyrannosaurus rex, a comparison of the flights of mosquitoes and jet airliners, the cost of submarines, and the energy released by an atomic weapon. We will then work together as a class to identify problems in everyday life and/or current world events to analyze with this powerful tool.

ME 140. Advanced Thermal Systems. 5 Units.
Capstone course. Thermal analysis and engineering emphasizing integrating heat transfer, fluid mechanics, and thermodynamics into a unified approach to treating complex systems. Mixtures, humidity, chemical and phase equilibrium, and availability. Labs apply principles through hands-on experience with a turbojet engine, PEM fuel cell, and hybrid solid/oxygen rocket motor. Use of MATLAB as a computational tool. Prerequisites: ENGR 30, ME 70, and 131A.B.

ME 141. Alternative Energy Systems. 5 Units.
Capstone course. Energy analysis, diagnostics and engineering of selected alternative energy systems with an integrated thermodynamic, heat transfer, and fluid mechanic approach. Mixtures, transport, reactions, electrochemical processes and photovoltaic effects. Labs apply principles through hands-on experience with selected alternative energy systems and their components. Use of MATLAB as an analysis tool.

ME 149. Mechanical Measurements. 3 Units.
The Mechanical Measurement laboratory course introduces undergraduates to modern experimental methods in solid mechanics, fluid mechanics, and thermal sciences. A key feature of several of the laboratory experiments will be the integration of solid mechanics, fluid mechanics, and heat transfer principles, so that students gain an appreciation for the interplay between these disciplines in real-world problems.

ME 14AX. Design for Silver and Bronze. 2 Units.
This class aims to provide a synthesis of design and technique in metalworking. When using precious metals (silver and bronze) the scale of the works naturally becomes much smaller than other design endeavors. This intimate size allows for attention to detail and refinement not common or often considered in other areas of design. The method involves creating a piece out of wax, and going through a process to achieve that piece in metal. All projects will center on this process. Students will complete complete three projects, a quick-start ring, a client design theme project and a belt. Sara and Amanda have been teaching ME298: Silversmithing in Design at Stanford for 17 years, they are full time designers at RedStart Design, LLC and also Lecturers in Design in the Mechanical Engineering Department.

ME 151. Introduction to Computational Mechanics. 3 Units.
In modern engineering design of structural systems, computer analysis is often used at every stage, from initial prototyping through final design. This course will introduce students to computational modeling and prototyping applied to solids and structures. The course reviews the basic theory of linear solid mechanics, introduces the finite element method for numerical modeling of mechanics-based problems, and provides practical experience in computer modeling using a commercial finite element code.

ME 152. Material Behaviors and Failure Prediction. 3 Units.
Exploration of mechanical behaviors of natural and engineered materials. Topics include anisotropic, elastoplastic and viscoelastic behaviors, fatigue and multiaxial failure criteria. Applications to biological materials and materials with natural or induced microstructures (e.g., through additive manufacturing). Prerequisite: ME80 or CEE101A.

ME 15AX. Voluminous Design. 2 Units.
This class aims to provide a synthesis of design and technique in metalworking. When using precious metals (silver and bronze) the scale of the works naturally becomes much smaller than other design endeavors. This intimate size allows for attention to detail and refinement not common or often considered in other areas of design. The method involves creating a piece out of wax, and going through a process to achieve that piece in metal. All projects will center on this process. Students will complete complete three projects, a quick-start ring, a client design theme project and a belt. Sara and Amanda have been teaching ME298: Silversmithing in Design at Stanford for 17 years, they are full time designers at RedStart Design, LLC and also Lecturers in Design in the Mechanical Engineering Department.
ME 161. Dynamic Systems, Vibrations and Control. 3-4 Units.
Modeling, analysis, and measurement of mechanical and electromechanical dynamic systems. Numerical and closed form solutions of ordinary differential equations governing the behavior of single and multiple-degree-of-freedom systems. Stability, forcing, resonance, and control system design. Prerequisites: Ordinary differential equations (CME 102 or MATH 53), linear algebra (determinants and solving linear equations, CME 104 or MATH 53 are recommended) and dynamics (E 15). Graduate students only enroll in 261.
Same as: ME 261

ME 17. The Science of Flames. 3 Units.
This course is about what causes flames to look like they do and about what causes them to propagate. The physical and chemical phenomena that govern behaviors of flames will constitute the topics for discussion. The basic principles that govern flame phenomena include the conservation of mass, the first law of thermodynamics, and the momentum principle. Since flame processes are controlled by the rates of chemical reactions, these basic principles will be applied when account is made for the chemical transformations that occur when reactant bonds are broken and new bonds are formed, producing combustion products. In essence, this course serves as an introduction to combustion science.

ME 170A. Mechanical Engineering Design- Integrating Context with Engineering. 4 Units.
First course of two-quarter capstone sequence. Working in project teams, design and develop an engineering system addressing a real-world problem. Projects are based on themes addressing most pressing needs of human society, for 2018-2019 the theme is clean energy. Learn and utilize industry development process; first quarter focuses on establishing requirements and narrowing to top concept. Second quarter emphasizes engineering analysis, design risk assessment, build, test and iteration. Learn and apply professional communication skills in the areas of speaking, presenting, writing, and listening. This is the first quarter of a 2-quarter course. Students must also enroll in ME 170b; completion of 170b required to earn grade in 170a. Enrollment limited, contact instructor. (Cardinal Course certified by the Haas Center).

ME 170B. Mechanical Engineering Design: Integrating Context with Engineering. 4 Units.
Second course of two-quarter capstone sequence. Working in project teams, design and develop an engineering system addressing a real-world problem. Projects are based on themes, addressing most pressing needs of human society, for 2018-2019 the theme is clean energy. Learn and utilize industry development process; first quarter focuses on establishing requirements and narrowing to top concept, second quarter emphasizes engineering analysis, design risk assessment, build, test and iteration. Learn and apply professional communication skills in the areas of speaking, presenting, writing, and listening. (Cardinal Course certified by the Haas Center).

ME 171E. Aerial Robot Design. 4 Units.
(Graduate students only enroll in ME 271e or AA 248e) A result-focused introduction to the design of winged aerial robots capable of vertical takeoff and landing for a wide range of applications. Students will learn how to ideate specific aerial robot applications and make an appropriate design from scratch that meets mission requirements. Design skill outcomes include: robot need identification based on mission requirements; system ideation and sizing; making design performance tradeoffs; aerodynamic wing design; CAD assembly; communicating the design and its application. The hands-on lab experience includes prototyping the aerial robot mission, to inform system design, by building and flying quadcopters. Prerequisites: intro level undergraduate fluid mechanics or aerodynamics (e.g. ME 70 or AA 100) or equivalent; Intro level undergraduate electronics or Arduino experience; MATLAB experience. Same as: AA 248E, ME 271E

ME 177. Global Engineers’ Education. 3 Units.
A project based course for those who would like to use their engineering backgrounds to address real world challenges faced by underserved communities globally. In direct collaboration with an underserved community from a rural village in India, students will develop engineering solutions to the challenge of sanitation and hygiene. Focus will be on working with the community rather than for them. Concepts covered will include designing with what designers care about at the center, articulating and realizing individual and community aspirations, ethics of engaging with underserved communities, and methodology of working sustainably with an underserved community.

ME 181. Deliverables: A Mechanical Engineering Design Practicum. 3 Units.
Deliverables empowers you with the understanding and confidence to tackle the mechanical design challenges seen in industry. Each week a new design consideration is introduced and you will complete a simplified yet representative mechanical design project on this topic and submit authentic deliverables, such as cad models, mechanical drawings, and BOMs (bills of materials). Through this method you will arm yourself with the skills required to apply the content of this class to the design of industry-level products. With frequent feedback, reflection, and revision you will refine your design process. Most importantly, your experience here will foster the mindset necessary to create simple, robust, and thoughtful solutions and help you to thrive in the ambiguous world that is mechanical design.

ME 182. Electric Transportation. 3 Units.
Transportation accounts for nearly one-third of American energy use and greenhouse gas emissions and three-quarters of American oil consumption. It has crucial impacts on climate change, air pollution, resource depletion, and national security. Students wishing to address these issues reconsider how we move, finding sustainable transportation solutions. An introduction to the issue, covering the past and present of transportation and its impacts; examining alternative fuel proposals; and digging deeper into the most promising option: battery electric vehicles. Energy requirements of air, ground, and maritime transportation; design of electric motors, power control systems, drive trains, and batteries; and technologies for generating renewable energy. Students will also have a fun opportunity for a hands-on experience with an electric car. Prerequisites: Introduction to calculus and Physics AP or elementary mechanics.

ME 185. Electric Vehicle Design. 3 Units.
This project based class focuses on the design and prototyping of electric vehicles. Students learn the fundamentals of vehicle design in class and apply the knowledge as they form teams and work on projects involving concept, specifications, structure, systems, integration, assembly, testing, etc. The class meets once a week to learn about the fundamentals, exchange their experiences, and coordinate between projects. The teams of 3-5 will work on their projects independently.

ME 180. Teamology: Creative Teams and Individual Development. 3 Units.
Preference to sophomores. Roles on a problem solving team that best suit individual creative characteristics. Two teams are formed for teaching experientially how to develop less conscious abilities from teammates creative in those roles. Reinforcement teams have members with similar personalities; problem solving teams are composed of people with maximally different personalities.

ME 19. Pre-field Course for Alternative Spring Break: Design for Social Change. 1 Unit.
Focus is on applying design, technology and innovation to catalyze social change. Topics include identifying social needs, learning different brainstorming methods, developing an applicable service model or product, prototyping, implementation, and reiteration. Reading and service components, followed by week-long Alternative Spring Break trip. See http://d4sc.blogspot.com. Enrollment limited to 12. May be repeated for credit.
ME 191. Engineering Problems and Experimental Investigation. 1-5 Unit.
Directed study and research for undergraduates on a subject of mutual interest to student and staff member. Student must find faculty sponsor and have approval of adviser.

ME 191H. Honors Research. 1-5 Unit.
Student must find faculty honors adviser and apply for admission to the honors program.nn (Staff).

ME 195A. Food, Design & Technology. 1 Unit.
Food has been a great source of inspiration for many entrepreneurs and designers. In Silicon Valley, the number of food design solutions has increased tremendously. The goal of this course is to expose students to the landscape of food innovation and design. We will look at food in two different lenses—design and technology. In the first half of the course, students will learn the design thinking process through food. In the next half, students will explore various applications of the design thinking methodology in the real world. Students will do so by actively asking questions, participating in discussions, and engaging in hands-on activities led by industry leaders and experts. Weekly readings will be assigned.

ME 199A. Practical Training. 1 Unit.
For undergraduate students. Educational opportunities in high technology research and development labs in industry. Students engage in internship work and integrate that work into their academic program. Following internship work, students complete a research report outlining work activity, problems investigated, key results, and follow-up projects they expect to perform. Meets the requirements for curricular practical training for students on F-1 visas. Student is responsible for arranging own internship/employment and faculty sponsorship. Register under faculty sponsor's section number. All paperwork must be completed by student and faculty sponsor, as the Service Office does not sponsor CPT. Students are allowed only two quarters of CPT per degree program. Course may be repeated twice.

ME 200. Judging Historical Significance Through the Automobile. 1 Unit.
This seminar is for students to learn how to assess the impact of historical importance through the lens of the automobile. Students will participate in discussions about measuring and judging historical importance from a number of perspectives - engineering, aesthetic, historical, etc. They will then decide on criteria and use these to be a part of a judging team at the Pebble Beach Concours d'Elegance. The Pebble Beach event is the leading concours for automobiles in the United States. Using the criteria established by the students, the judging team, including the students, will decide the recipient of the Stanford/Revs Automotive History Trophy for 2017 and have the opportunity to present it on the lawn at Pebble Beach Lodge in August. Must apply using this application: http://revs.stanford.edu/course/703. Must attend first class to be considered for acceptance, no exceptions.

ME 202. Mechaphonics: Smart Phone-Enabled Mechatronic Systems. 3 Units.
Explore the use of smartphones and tablets as enabling components within modern mechatronic systems. Emphasis on leveraging Android resources (user interface, communications, sensors) in combination with the Arduino microcontroller platform to design and build complex mechatronic devices. Topics include: basic Android application development, Android communications, sensors, Arduino, Arduino peripherals. Large, open-ended team project. Android device and programming hardware required. Limited enrollment. Prerequisites: ME210, ME218, or permission of instructor.

ME 203. Design and Manufacturing. 4 Units.
Integrated experience involving need finding, product definition, conceptual design, detail design, prototype manufacture, public presentation of outcomes, archiving and interpreting the product realization process and its results. Presents an overview of manufacturing processes crucial to the practice of design. Corequisite: 103D or CAD experience. Recommended: 101.

ME 204A. Bicycle Design and Frame-Building. 1 Unit.
Lecture/lab. The engineering and artistic execution of designing and building a bicycle frame. Fundamentals of bicycle dynamics, handling, and sizing. Manufacturing processes. Films, guest lecturers, field trips. Each student designs and fabricates a custom bicycle frame. This course is now a two part course series ME204A&B. Limited enrollment. Prerequisite: 203 or equivalent.

ME 204B. Bicycle Design and Frame-Building. 3 Units.
The engineering and artistic execution of designing and building a bicycle frame. The fundamentals of bicycle dynamics, handling, and sizing. Manufacturing processes. Films, guest lecturers, field trips. Each student designs a custom bicycle frame that they continue from ME204A in winter quarter. Limited enrollment, admission by consent of instructors. Attendance at first lecture is required. Both ME204A and ME204B must be taken. Prerequisite: 203 or equivalent.

ME 206A. Design for Extreme Affordability. 4 Units.
Design for Extreme Affordability (fondly called Extreme) is a two-quarter course offered by the d.school through the School of Engineering and the Graduate School of Business. This multidisciplinary project-based experience creates an enabling environment in which students learn to design products and services that will change the lives of the world's poorest citizens. Students work directly with course partners on real world problems, the culmination of which is actual implementation and real impact. Topics include design thinking, product and service design, rapid prototype engineering and testing, business modeling, social entrepreneurship, team dynamics, impact measurement, operations planning and ethics. Possibility to travel overseas during spring break. Previous projects include d.light, Driptech, Earthenable, Embrace, the Lotus Pump, MiracleBrace, Noora Health and Sanku. Periodic design reviews; Final course presentation and expo; industry and adviser interaction. Limited enrollment via application. Must sign up for ME206A and ME206B. See extreme.stanford.edu.

ME 206B. Design for Extreme Affordability. 4 Units.
Design for Extreme Affordability (fondly called Extreme) is a two-quarter course offered by the d.school through the School of Engineering and the Graduate School of Business. This multidisciplinary project-based experience creates an enabling environment in which students learn to design products and services that will change the lives of the world's poorest citizens. Students work directly with course partners on real world problems, the culmination of which is actual implementation and real impact. Topics include design thinking, product and service design, rapid prototype engineering and testing, business modeling, social entrepreneurship, team dynamics, impact measurement, operations planning and ethics. Possibility to travel overseas during spring break. Previous projects include d.light, Driptech, Earthenable, Embrace, the Lotus Pump, MiracleBrace, Noora Health and Sanku. Periodic design reviews; Final course presentation and expo; industry and adviser interaction. Limited enrollment via application. Must sign up for ME206A and ME206B. See extreme.stanford.edu.

ME 207. Movie Design. 2 Units.
Learn the ins and outs of high-speed filmmaking in the digital age; writing, directing, shooting, and editing. We will do it through a rapid prototyping approach to filmmaking. Whether you have tons of experience or none, you'll leave with new tactics that will up your storytelling, filmmaking, and design chops simultaneously. These techniques are useful whether you plan to move to Hollywood or create a video for the web. Project-based: students will design, write, shoot, edit, and screen a short film in the span of one week. It's going to be quick but intense, kind of like cross-fit for your storytelling and video creating muscles. You will sweat a bit, but you'll feel confident afterwards. Students should be prepared to spend significant amount of out of class work-time creating movies: for one week + one weekend, see "Notes" for specific dates. Admission by application. See dschool.stanford.edu/classes for more information.
ME 208. Patent Law and Strategy for Innovators and Entrepreneurs. 2-3 Units.
This course teaches the essentials for a startup to build a valuable patent portfolio and avoid a patent infringement lawsuit. Jeffrey Schox, who is the top recommended patent attorney for Y Combinator, built the patent portfolio for Twilio (IPO), Cruise ($1B acquisition), and 300 startups that have collectively raised over $3B in venture capital. This course is equally applicable to EE, CS, and Bioengineering students. For those students who are interested in a career in Patent Law, please note that this course is a prerequisite for ME238 Patent Prosecution. Same as: MS&E 278

ME 209. Imperfections in Crystalline Solids. 3 Units.
To develop a basic quantitative understanding of the behavior of point, line and planar defects in crystalline solids. Particular attention is focused on those defects that control the thermodynamic, structural and mechanical properties of crystalline materials.

ME 210. Introduction to Mechatronics. 4 Units.
Technologies involved in mechatronics (intelligent electro-mechanical systems), and techniques to apply this technology to mechatronic system design. Topics include: electronics (A/D, D/A converters, op-amps, filters, power devices); software program design, event-driven programming; hardware and DC stepper motors, solenoids, and robust sensing. Large, open-ended team project. Prerequisites: ENGR 40, CS 106, or equivalents. Same as: EE 118

ME 215C. Analytical Product Design. 4 Units.
Analytical design experience for consumer product. Integration of models of engineering function, manufacturing costs, and market conditions. Introduction to modeling micro economics, market models, and consumer surveying as applied in product design. Introduction to consumer product cost modeling. Draw from other coursework to build engineering function model. Student teams build and link these models in an optimization framework to maximize profitability. Build prototypes for engineering function and form expression. Same as: APD

ME 216A. Advanced Product Design: Needfinding. 3-4 Units.
Human needs that lead to the conceptualization of future products, environments, systems, and services. Field work in public and private settings; appraisal of personal values; readings on social ethnographic issues; and needfinding for a corporate client. Emphasis is on developing the flexible thinking skills that enable the designer to navigate the future. Prerequisites for undergraduates: ME115A, ME115B and ME203, or consent of the instructor.

ME 216B. Advanced Product Design: Implementation 1. 4 Units.
Summary project using knowledge, methodology, and skills obtained in Product Design major. Students implement an original design concept and present it to a professional jury. Prerequisite: 216A.

ME 216C. Advanced Product Design: Implementation 2. 4 Units.
ME216C: Implementation is a continuation of ME216B. Students would develop project from ME216B to a further state of completion. Design will be completed, details about manufacturing, cost and production will be developed. Students will validate their projects by making them real in the world. Prerequisites for class are ME216A and ME216B. Prerequisite: 216A and 216B.

ME 216M. Introduction to the Design of Smart Products. 3-4 Units.
This course will focus on the technical mechatronic skills as well as the human factors and interaction design considerations required for the design of smart products and devices. Students will learn techniques for rapid prototyping of smart devices, best practices for physical interaction design, fundamentals of affordances and signifiers, and interaction across networked devices. Students will be introduced to design guidelines for integrating electrical components such as PCBs into mechanical assemblies and consider the physical form of devices, not just as enclosures but also as a central component of the smart product. Prerequisites include: CS106A and E40 highly recommended, or instructor approval. Same as: CS 377N

ME 217. Design & Construction in Wood. 3 Units.
Exploration of the design and construction of objects using wood including the rich history and current trends for furniture. Taught in the Product Realization Lab. Limited enrollment via application; see stanford.edu/class/me217.

ME 218A. Smart Product Design Fundamentals. 4-5 Units.
Lecture/Lab. Team design project series on programmable electromechanical systems design. Topics: transistors as switches, basic digital and analog circuits, operational amplifiers, comparators, software design, state machines, programming in C. Lab fee. Limited enrollment.

ME 218B. Smart Product Design Applications. 4-5 Units.
Lecture/lab. Second in team design project series on programmable electromechanical systems design. Topics: user I/O, timer systems, interrupts, signal conditioning, software design for embedded systems, statecharts, sensors, actuators, noise, and power supplies. Lab fee. Limited enrollment. Prerequisite: 218A or passing the smart product design fundamentals proficiency examination.

ME 218C. Smart Product Design Practice. 4-5 Units.
Lecture/lab. Advanced level in series on programmable electromechanical systems design. Topics: inter-processor communication, system design with multiple microprocessors, architecture and assembly language programming for the PIC microcontroller, controlling the embedded software tool chain, A/D and D/A techniques, electronic manufacturing technology. Team project. Lab fee. Limited enrollment. Prerequisite: 218B.
ME 218D. Smart Product Design: Projects. 3-4 Units.
Lecture/lab. Industrially sponsored project is the culmination of the Smart Product Design sequence. Student teams take on an industrial project requiring application and extension of knowledge gained in the prior three quarters, including prototyping of a final solution with hardware, software, and professional documentation and presentation. Lectures extend the students’ knowledge of electronic and software design, and electronic manufacturing techniques. Topics: chip level design of microprocessor systems, real time operating systems, alternate microprocessor architectures, and PCB layout and fabrication. Prerequisite: 218C.

ME 219. The Magic of Materials and Manufacturing. 3 Units.
ME219 is intended for students who anticipate imagining and creating new products and who are interested in how to make the leap from making one to making many. Through a combination of lectures, weekly factory field trips, and multimedia presentations the class will help students acquire foundational professional experience with materials and materiality, manufacturing processes, and the business systems inside factories. We hope to instill in students a deep and life-long love of materials and manufacturing in order to make great products and tell a good story about each one. This class assumes basic knowledge of materials and manufacturing processes which result from taking ENGR 50, ME203, or equivalent course or life experience.

ME 220. Introduction to Sensors. 3-4 Units.
Sensors are widely used in scientific research and as an integral part of commercial products and automated systems. The basic principles for sensing displacement, force, pressure, acceleration, temperature, optical radiation, nuclear radiation, and other physical parameters. Performance, cost, and operating requirements of available sensors. Elementary electronic circuits which are typically used with sensors. Lecture demonstration of a representative sensor from each category elucidates operating principles and typical performance. Lab experiments with off-the-shelf devices. Recommended Pre-requisites or equivalent knowledge: Physics 43 electromagnetism, Physics 41 mechanics, Math 53 Taylor series approximation, 2nd order Ordinary Diff Eqns, ENGR40A/Engr40 or ME210, i.e. some exposure to building basic circuits.

ME 224. The Consumer Mind and Behavior Design. 3 Units.
This course will introduce new theories and research concerning neuroscience and behavioral psychology to examine models for designing user habits. Students will learn how to use the latest behavior change methodologies from industry-leading experts to design or redesign a customer experience. Course topics will be taught in the context of design thinking: empathize-define-ideate-prototype-test. Students will leave the class having prototyped, tested, and improved a user behavior.

ME 225. Scaling Your Vision. 3 Units.
Scaling Your Vision is intended for design and engineering oriented students who anticipate or have an interest in launching products. Where the cousin of this class, ME219, is an overview of fabrication and factory systems, this course explores how to go from vision to reality, and from parts to products. We'll explore the systems that enable us to design and produce high-quality products, at scale, at reasonable prices, including quality systems, supply chains, and different ways of conveying intent to factories. Students will acquire a professional foundation in the business of manufacturing through readings, in-class discussion, and roughly one-a-week team projects.

ME 226. Designing Sustainable Behavior. 1 Unit.
How do you design a product so people will use it in the most sustainable way? Through practical design exercises you experience how selected design tools can help you affect the behavior of your target group. The course consists of an 8-hour workshop on Saturday April 6th in Studio2 at the d.school, followed by a group project finishing April 24th. Students may request to only audit the workshop by emailing jdiae@stanford.edu. The course builds upon and contributes to an ongoing research project. Prerequisite: training in product design.

ME 227. Vehicle Dynamics and Control. 3 Units.
The application of dynamics, kinematics, and control theory to the analysis and design of ground vehicle behavior. Simplified models of ride, handling, and braking, their role in developing intuition, and limitations in engineering design. Suspension design fundamentals. Performance and safety enhancement through automatic control systems. In-car laboratory assignments for model validation and kinesthetic understanding of dynamics. Limited enrollment. Prerequisites: ENGR 105, consent of instructor.

ME 228. The Future of Mechanical Engineering. 1 Unit.
This seminar series provides an overview of current research in mechanical engineering and of its interface with other engineering and non-engineering disciplines. The seminar is targeted at senior mechanical engineering undergraduates and mechanical engineering graduate students. Presenters will be selected external speakers who feature exciting, cutting-edge applications of mechanical engineering.

ME 22N. Smart Robots in our Mix: Collaborating in High Tech Environments of Tomorrow. 3 Units.
This course invites students to explore rules of engagement in a global digitally interconnected world they will create with the robots in their society. The material will be taught in the context of ubiquitous integrated technology that will be part of their future reality. Human-robot interactions will be an integral part of future diverse teams. Students will explore what form will this interaction take as an emerging element of tomorrow’s society, be it medical implanted technology or the implications of military use of robots and social media in future society. Students will learn to foster their creative confidence to explore collaboration by differences for social innovation in a digitally networked world.

ME 230. Principles of Mechanical Measurements. 3 Units.
A lecture-based introduction to experiment design and implementation. Topics include measurement methods, transducer fundamentals, instrumentation, optical systems, signal processing, noise theory, analog and digital electronic fundamentals, data acquisition and processing systems. May be repeat for credit.

ME 231. Educating Young STEM Thinkers. 3-5 Units.
The course is both theory and practice focused. The purpose is twofold; to provide reflection and mentoring opportunities for students to learn about pathways to STEM careers and to introduce mentoring opportunities with young STEM thinkers. Same as: EDUC 139, EDUC 239, ME 139

ME 232. Additive Manufacturing- From Fundamentals to Applications. 3 Units.
Additive manufacturing (AM) is an emerging technique for direct conversion of 3D computer aided designs into physical objects using a variety of approaches. AM technologies are simple and flexible processes that allow for the creation of very complex and customizable 3D objects in just a few process steps. This lecture gives an overview of available processes and current research in additive manufacturing. Students will get to know how AM can change the way we prototype and manufacture products in the future.

ME 234. Introduction to Neuromechanics. 3 Units.
ME 236. Tales to Design Cars By. 1-3 Unit.
Students learn to tell personal narratives and prototype connections between popular and historic media using the automobile. Explores the meaning and impact of personal and preserved car histories. Storytelling techniques serve to make sense of car experiences through engineering design principles and social learning. Replay memories, examine engagement and understand user interviews, to design for the mobility experience of the future. This course celebrates car fascination, and leads the student through finding and telling a car story through the REVS photographic archives, ethnographic research, interviews, and diverse individual and collaborative narrative methods-verbal, non-verbal, and film. Methods draw from socio-cognitive psychology design thinking, and fine art; applied to car storytelling. Course culminates in a final story presentation and showcase. Restricted to co-term and graduate students. Class Size limited to 18.

ME 237. 3D Printing for Non-Technical Innovators. 1-3 Unit.
3D Printing is a method of creation that requires only some basic computer skills and a few rules of thumb. This class will allow students to discover for themselves the potential and limitations of 3D Printing through a build intensive design project. This course is an excellent option for anyone who ever wanted to prototype an invention, create a work of art, customize a product or just make something cool — and yet lacked the skills or a fully equipped workshop. Students may enroll for 1 unit to attend the lectures or 3 units for the complete project course. No prior technical knowledge needed. Note: Course material is targeted toward non-ME Design and non-PD majors. An application is required for the 3-unit course option. Please complete the online application by Friday, March 25th. The application is available on the course website: web.stanford.edu/class/me137.
Same as: ME 137

ME 238. Patent Prosecution. 2-3 Units.
The course follows the patent application process through the important stages: inventor interviews, patentability analysis, drafting claims, drafting a specification, filing a patent application, and responding to an office action. The subject matter and practical instruction relevant to each stage are addressed in the context of current rules and case law. The course includes four written assignments: an invention capture, a claim set, a full patent application, and an Office Action response. Prerequisites: Law 326 (IP Patents), Law 409 (Intro IP), ME 208, or MS&E 278.

ME 239. Mechanics of the Cell. 3 Units.
Understanding cells as the fundamental building blocks of life. Cell biomechanics: understanding how cell biology and biochemistry influence the mechanical properties of the cell. Cell mechanobiology: understanding how the mechanical environment, load, pressure, stress or strain can influence the cell's shape and integrity, and eventually its biology and biochemistry. Characterizing, modeling, and simulating cell behavior: energy and entropy of biopolymers and biomembranes. Characterizing mechanotransduction.

ME 240. Introduction to Nanotechnology. 3 Units.
Nanotechnology as multidisciplinary with contributions from physical sciences, engineering, and industry. Current topics in nanotechnology research; developments in nanomaterials, mechanics, electronics, and sensors; and applications. Nanoscale materials building blocks, fabrication and assembly processes, characterization and properties, and novel system architectures. Implications for future development.

ME 241. Mechanical Behavior of Nanomaterials. 3 Units.
Mechanical behavior of the following nanoscale solids: 2D materials (metal thin films, graphene), 1D materials (nanowires, carbon nanotubes), and 0D materials (metallic nanoparticles, quantum dots). This course will cover elasticity, plasticity and fracture in nanomaterials, defect-scarce nanomaterials, deformation near free surfaces, coupled optoelectronic and mechanical properties (e.g. piezoelectric nanowires, quantum dots), and nanomechanical measurement techniques. Prerequisites: Mechanics of Materials (ME80) or equivalent.
Same as: MATSCI 241

ME 242B. Mechanical Vibrations. 3 Units.
For M.S.-level graduate students. Covers the vibrations of discrete systems and continuous structures. Introduction to the computational dynamics of linear engineering systems. Review of analytical dynamics of discrete systems; undamped and damped vibrations of N-degree-of-freedom systems; continuous systems; approximation of continuous systems by displacement methods; solution methods for the Eigenvalue problem; direct time-integration methods. Prerequisites: AA 242A or equivalent (recommended but not required); basic knowledge of linear algebra and ODEs; no prior knowledge of structural dynamics is assumed. Same as: AA 242B

ME 243. Designing Emotion- for Reactive Car Interfaces. 1-3 Unit.
Students learn to define emotions as physiology, expression, and private experience using the automobile and shared space. Explores the meaning and impact of personal and user car experience. Reflective, narrative, and socio-cognitive techniques serve to make sense of car experiences; replay memories; examine engagement; understand user interviews. This course celebrates car fascination, and leads the student through finding and telling the car experience through discussion, ethnographic research, interviews, and diverse individual and collaborative narrative methods-verbal, non-verbal, and in car experiences. Methods draw from socio-cognitive psychology, design thinking, and fine art, and are applied to the car â¿¿drive alongâ¿ or mobility experience. Course culminates in a final individual narrative presentation and group project demonstration.

ME 244. Mechanotransduction in Cells and Tissues. 3 Units.
Mechanical cues play a critical role in development, normal functioning of cells and tissues, and various diseases. This course will cover what is known about cellular mechanotransduction, or the processes by which living cells sense and respond to physical cues such as physiological forces or mechanical properties of the tissue microenvironment. Experimental techniques and current areas of active investigation will be highlighted.
Same as: BIOE 283, BIOPHYS 244

ME 245. From Maps to Meaning. 3 Units.
One of the oldest visual tools created by humans to make sense of the complexities of our world, maps are unique in their ability to synthesize data, convey meaning through spatial logic, and deliver information at high resolution. They are also incredible tools for communication, data sorting and insight finding. n This is an intensive, hands-on course that uses mapping techniques to navigate the intersection of data and design. Students will tackle three main projects and several shorter assignments over 10 weeks. Perfect attendance and completion of projects is absolutely mandatory. You will: n-collect, sort and organize quantitative and qualitative data; n-create maps to synthesize complex information; n-use mapping as a tool to work on design problems - explore biases in map-making; n-create design interventions based on data and maps. n While no specific prior experience is necessary, this class is for you if you are comfortable with the ambiguity of learning new skills on and off the computer, if you seek out about design and data, and if you are not intimidated by the idea of creating analog and digital maps. Admission by application. See dschool.stanford.edu/classes for more information.

ME 24N. Designing the Car of the Future. 3 Units.
Preference to freshmen. Automotive design drawing from all areas of mechanical engineering. The state of the art in automotive design and the engineering principles to understand vehicle performance. Future technologies for vehicles. Topics include vehicle emissions and fuel consumption, possibilities of hydrogen, drive-by-wire systems, active safety and collision avoidance, and human-machine interface issues.
ME 250. Internal Combustion Engines. 1-5 Unit.
Internal combustion engines including conventional and turbocharged spark ignition, and diesel engines. Lectures: basic engine cycles, engine components, methods of analysis of engine performance, pollutant emissions, and methods of engine testing. Lab involves hands-on experience with engines and test hardware. Limited enrollment. Prerequisites: 140.

ME 257. Gas-Turbine Design Analysis. 3 Units.
This course is concerned with the design analysis of gas-turbine engines. After reviewing essential concepts of thermo- and aerodynamics, we consider a turbofan gas-turbine engine that is representative of a business aircraft. We will first conduct a performance analysis to match the engine design with aircraft performance requirements. This is followed by examining individual engine components, including compressor, combustor, turbines, and nozzles, thereby increase the level of physical description. Aspects of modern engine concepts, environmental impacts, and advanced engine-analysis methods will be discussed. Students will have the opportunity to develop a simulation code to perform a basic design analysis of a turbofan engine. Course Prerequisites: ENGR 30, ME 70, ME 131B, CME 100.

Same as: CEE 261B, ENERGY 262

ME 260. Fuel Cell Science and Technology. 3 Units.
Emphasis on proton exchange membrane (PEM) and solid oxide fuel cells (SOFC), and principles of electrochemical energy conversion. Topics in materials science, thermodynamics, and fluid mechanics. Prerequisites: MATH 43, PHYSICS 55, and ENGR 30 or ME 140, or equivalents.

ME 261. Dynamic Systems, Vibrations and Control. 3-4 Units.
Modeling, analysis, and measurement of mechanical and electromechanical dynamic systems. Numerical and closed form solutions of ordinary differential equations governing the behavior of single and multiple-degree-of-freedom systems. Stability, forcing, resonance, and control system design. Prerequisites: Ordinary differential equations (CME 102 or MATH 53), linear algebra (determinants and solving linear equations, CME 104 or MATH 53 are recommended) and dynamics (E 1B). Graduate students only enroll in 261.

Same as: ME 161

ME 262. Physics of Wind Energy. 3 Units.
Formerly CEE 261. An introduction to the analysis and modeling of wind energy resources and their extraction. Topics include the physical origins of atmospheric winds; vertical profiles of wind speed and turbulence over land and sea; the wind energy spectrum and its modification by natural topography and built environments; theoretical limits on wind energy extraction by wind turbines and wind farms; modeling of wind turbine aerodynamics and wind farm performance. Final project will focus on development of a new wind energy technology concept. Prerequisites: CEE 262A or ME 351A.

Same as: CEE 261B, ENERGY 262

ME 263. The Chair. 4 Units.
Students design and fabricate a highly refined chair. The process is informed and supported by historical reference, anthropometrics, form studies, user testing, material investigations, and workshops in wood steam-bending, plywood forming, metal tube bending, TIG & MIG welding, upholstery & sewing. Pre-req: ME 203 Design and Manufacturing. May be repeat for credit.

ME 264. d.science: Design for Science. 3-4 Units.
Where does design fit into scientific research? In this class, we will design for how data are collected, how data are communicated, and how to apply scientific insights to community-based projects. This year’s projects are inspired by the Citizen Science movement and The Year of the Bay. We will use human-centered design methods to understand the needs of bay area citizens through hands-on data collection, public data exploration and collaboration with local industry, government and research partners. With guest lectures from the design and science community, research mentors, and skills workshops, you will develop an actionable understanding of the challenges of collecting good data, the complexities of creating engaging stories with quantitative data, and the challenges of balancing insights from both human-centered design research and scientific research. One of the three class projects will involve visualizing and mapping big data. No prior programming or statistics experience required. Enrollment limited to 24. This course is open to graduate students from all schools and departments. Apply the first day of class.

ME 265. Technology Licensing and Commercialization. 3 Units.
Course focuses on how to bridge the gap between creation and commercialization with new ideas, inventions, and technology (not limited to mechanical engineering). Covers business strategies and legal aspects of determining what can be owned and licensed, how to determine commercial value, and what agreements and other paperwork is necessary. Discussion includes aspects of Contract and Intellectual Property law as well as provisions of license agreements and their negotiation. All materials provided including many sample documents.

ME 266. Ethics and Equity in Transportation Systems. 3 Units.
Transportation is a crucial element of human life. It enables communication with others, provides access to employment/economic opportunity, and transports goods upon which we depend. However, transportation also generates negative impacts: pollution, noise, energy consumption and risk to human life. Because of its enormous capability to affect our lives, transportation is one of the most highly regulated businesses in the world. These regulations are designed to promote social welfare, improve access, and protect vulnerable populations. This course examines the origins and impacts of transportation policy and regulation: who benefits, who bears the cost, and how social and individual objectives are achieved.

ME 268. Robotics, AI and Design of Future Education. 1 Unit.
The seminar will feature guest lectures from industry and academia to discuss the state of the affairs in the field of Robotics, Artificial Intelligence (AI), and how that will impact the future Education. The time of robotics/AI are upon us. Within the next 10 to 20 years, many jobs will be replaced by robots/AI. We will cover hot topics in Robotics, AI, how we prepare students for the rise of Robotics/AI, how we Re-design and Re-invent our education to adapt to the new era.

ME 271E. Aerial Robot Design. 4 Units.
(Graduate students only enroll in ME 271E or AA 248E) A result-focused introduction to the design of winged aerial robots capable of vertical takeoff and landing for a wide range of applications. Students will learn how to ideate specific aerial robot applications and make an appropriate design from scratch that meets mission requirements. Design skill outcomes include: robot need identification based on mission requirements; system ideation and sizing; making design performance tradeoffs; aerodynamic wing design; CAD assembly; communicating the design and its application. The hands-on lab experience includes prototyping the aerial robot mission, to inform system design, by building and flying quadcopters. Prerequisites: intro level undergraduate fluid mechanics or aerodynamics (e.g. ME 70 or AA 100) or equivalent; Intro level undergraduate electronics or Arduino experience; MATLAB experience.

Same as: AA 248E, ME 171E
ME 277. Graduate Design Research Techniques. 3-4 Units.
Students from different backgrounds work on real-world design challenges. The Design Thinking process with emphasis on: ethnographic techniques, need finding, framing and concept generation. The Design Thinking process as a lens to explore ways to better understand people and their culture. Cultural differences as a source of design inspiration, with the understanding that design itself is a culturally embedded practice.

ME 281. Biomechanics of Movement. 3 Units.
Experimental techniques to study human and animal movement including motion capture systems, EMG, force plates, medical imaging, and animation. The mechanical properties of muscle and tendon, and quantitative analysis of musculoskeletal geometry. Projects and demonstrations emphasize applications of mechanics in sports, orthopedics, and rehabilitation.

ME 283. Introduction to Biomechanics and Mechanobiology. 3 Units.
Introduction to the application of mechanical engineering analysis to understand human physiology and disease. Topics include basics of musculoskeletal force analysis, cell mechanics, blood flow, and mechanical behaviors of tissues. Undergraduates should have taken ME 70 and ME 80 or equivalents.

ME 285. Computational Modeling in the Cardiovascular System. 3 Units.
This course introduces computational modeling methods for cardiovascular blood flow and physiology. Topics in this course include analytical and computational methods for solutions of flow in deformable vessels, one-dimensional equations of blood flow, cardiovascular anatomy, lumped parameter models, vascular trees, scaling laws, biomechanics of the circulatory system, and 3D patient specific modeling with finite elements; course will provide an overview of the diagnosis and treatment of adult and congenital cardiovascular diseases and review recent research in the literature in a journal club format. Students will use SimVascular software to do clinically-oriented projects in patient specific blood flow simulations.

ME 287. Mechanics of Biological Tissues. 4 Units.
Introduction to the mechanical behaviors of biological tissues in health and disease. Overview of experimental approaches to evaluating tissue properties and mathematical constitutive models. Elastic behaviors of hard tissues, nonlinear elastic and viscoelastic models for soft tissues.

ME 292. Humanize My Ride: Investigations in User-Centric Vehicle Design. 3 Units.
Humanize My Ride is vehicle design for the extreme user. We will explore the relationship between specialized vehicles and their users' needs to inform a deep dive into designing and prototyping a unique purpose modified ride for a new type of user. Utilizing the designing thinking approach and emerging technology such as Google GLASS, student teams will interview drivers and users of specific purpose cars and trucks and then choose a new user to design and build for. Teams will work collectively on different elements of one vehicle to test with their users' needs. This project-based course is accessible to students of all backgrounds interested in exploring and transforming the intersection of user-centric design, automotive technology, creative customization and hands-on building.

ME 297. Forecasting for Innovators: Technology, Tools & Social Change. 3 Units.
Technologies from the steam engine to the microprocessor have been mixed gifts, at once benefitting humankind and creating many of the problems facing humanity today. This class will explore how innovators can use forecasting methods to identify new challenges, develop responsive innovations and anticipate unintended consequences. Students will produce a long-range forecast project, applying a variety of methodologies including research, expert interviews and graphical exploration.

ME 298. Silversmithing and Design. 3-4 Units.
Skills involved in working with precious metals at a small scale. The course gives equal attention to design and the techniques involved in investment casting.

ME 299A. Practical Training. 1 Unit.
For master's students. Educational opportunities in high technology research and development labs in industry. Students engage in internship work and integrate that work into their academic program. Following internship work, students complete a research report outlining work activity, problems investigated, key results, and follow-up projects they expect to perform. Meets the requirements for curricular practical training for students on F-1 visas. Student is responsible for arranging own internship/employment and faculty sponsorship. Register under faculty sponsor's section number. All paperwork must be completed by student and faculty sponsor, as the Student Services Office does not sponsor CPT. Students are allowed only two quarters of CPT per degree program. Course may be repeated twice.

ME 299B. Practical Training. 1 Unit.
For Ph.D. students. Educational opportunities in high technology research and development labs in industry. Students engage in internship work and integrate that work into their academic program. Following internship work, students complete a research report outlining work activity, problems investigated, key results, and follow-up projects they expect to perform. Meets the requirements for curricular practical training for students on F-1 visas. Student is responsible for arranging own internship/employment and faculty sponsorship. Register under faculty sponsor's section number. All paperwork must be completed by student and faculty sponsor, as the student services office does not sponsor CPT. Students are allowed only two quarters of CPT per degree program. Course may be repeated twice.

ME 2951. Cars: A Crash Course. 1 Unit.
Focus is on the basic mechanics and significance of cars. Topics include a basic, real-world understanding of automobile workings, histories, industries, cultural impact, and related media. Field trips to Tesla Motors and Go-Kart Racer will be organized, and there will be guest appearances by local automotive historians and enthusiasts. Students will get hands on experience with maintaining real cars, see high performance engines run, and have the opportunity to learn how to drive a manual transmission.

ME 30. Engineering Thermodynamics. 3 Units.
The basic principles of thermodynamics are introduced in this course. Concepts of energy and entropy from elementary considerations of the microscopic nature of matter are discussed. The principles are applied in thermodynamic analyses directed towards understanding the performances of engineering systems. Methods and problems cover socially responsible economic generation and utilization of energy in central power generation plants, solar systems, refrigeration devices, and automobile, jet and gas-turbine engines.

ME 300A. Linear Algebra with Application to Engineering Computations. 3 Units.
Computer based solution of systems of algebraic equations obtained from engineering problems and eigen-system analysis, Gaussian elimination, effect of round-off error, operation counts, banded matrices arising from discretization of differential equations, ill-conditioned matrices, matrix theory, least square solution of unsolvable systems, solution of non-linear algebraic equations, eigenvalues and eigenvectors, similar matrices, unitary and Hermitian matrices, positive definiteness, Cayley-Hamilton theory and function of a matrix and iterative methods. Prerequisite: familiarity with computer programming, and MATH 51.

Same as: CME 200
ME 300B. Partial Differential Equations in Engineering. 3 Units.
Geometric interpretation of partial differential equation (PDE) characteristics; solution of first order PDEs and classification of second-order PDEs; self-similarity; separation of variables as applied to parabolic, hyperbolic, and elliptic PDEs; special functions; eigenfunction expansions; the method of characteristics. If time permits, Fourier integrals and transforms, Laplace transforms. Prerequisite: CME 200/ME 300A, equivalent, or consent of instructor.
Same as: CME 204

ME 300C. Introduction to Numerical Methods for Engineering. 3 Units.

ME 301. LaunchPad: Design and Launch your Product or Service. 4 Units.
This is an intense course in product design and development offered to graduate students only (no exceptions). In just ten weeks, we will apply principles of design thinking to the real-life challenge of imagining, prototyping, testing and iterating, building, pricing, marketing, distributing and selling your product or service. You will work hard on both sides of your brain. You will experience the joy of success and the (passing) pain of failure along the way. This course is an excellent chance to practice design thinking in a demanding, fast-paced, results-oriented group with support from faculty and industry leaders. This course may change your life. We will treat each team and idea as a real start-up, so the work will be intense. If you do not have a passionate and overwhelming urge to start a business or launch a product or service, this class will not be a fit. Teams must visit office hours in winter quarter (Tuesdays 2:30p-4:00p) in order to be considered for the course.

ME 302. The Future of the Automobile. 1 Unit.
This quarter, the seminar will take a specific focus on “Advanced Driver Assistance Systems”, which help drivers to maneuver their vehicles through traffic. Those systems range from navigation systems, adaptive cruise control, night vision, lane departure warning over automated parking, traffic jam assistance, to self-driving cars. With this breadth of applications, advanced driver assistance systems play an important role in making traffic safer, more efficient, and more enjoyable. This course, lectured by an industry expert, will introduce students to technology behind the systems, the benefits, challenges, and future perspectives of this exciting field. At the end of the quarter, students will have developed a technical understanding as well as an understanding for the interactions of the technology, business, and society with a specific automotive focus.

ME 302A. Introduction to Automotive and Transportation Innovation at Stanford. 1 Unit.
The objective of this course is to survey the innovative automotive and transportation community within Stanford. Stanford University has become one of the best universities on earth to change the future of transportation and this course is a ‘who’s who’ of that world. This is the first part of a 3-quarter seminar series, which build on one another but can be taken independently. This quarter, the seminar will feature talks from Stanford experts in focus areas as varied as autonomous vehicles, entrepreneurship, design, ethics, aerodynamics, neuroscience, communications and security. At the end of the quarter, students will have developed an understanding of Stanford’s portfolio of transportation work and know the specific individuals who are key to its future. To obtain credit, students must attend the first class (no exceptions) plus 7 additional classes for a total of 8 classes.

ME 302B. The Future of the Automobile- Driver Assistance and Automated Driving. 1 Unit.
Automated vehicles are on the verge to productization and have been subject to a lot of news recently: GM bought a self-driving tech startup for presumably more than $1 billion, BMW, Intel and MobileEye teamed up to “bring fully autonomous driving to streets by 2021”. Uber acquired Otto (another startup) for reportedly $680 million to lead Uber’s self-driving car effort. MobileEye and Delphi announced “a partnership for Level 4/5 automated Driving solution for 2019”. Ford announced to put a fleet of Level 4 autonomous vehicles on the road in 2021. Tesla is continuing to working on its Autopilot. Intel bought MobileEye. Sounds exciting ¿ if you have an idea what the terms and levels mean, and what the technology actually is, which is driving the vehicle automation. This class will provide a holistic introduction to the field of vehicle automation: The first three lectures will provide an overview, clarify terminology and categories, and dive into the legal and policy aspects of automated driving. The next three lectures discuss the technologies enabling vehicle automation and outline applications. Students are asked to work on a class assignment in groups discussing current topics of vehicle automation. The results of the group work will be presented in the final 2 lectures of the class. This is the second course of a 3-quarter seminar series, which build on one another but can be taken independently. This course, lectured by an industry expert, will introduce students to the technology behind the systems, the benefits, challenges, and future perspectives of this exciting field. Students will develop an understanding for the interactions of the technology, business, and public policies with a specific automotive focus.

ME 302C. The Future of the Automobile- Mobility Entrepreneurship. 1 Unit.
The objective of this course is to develop an understanding for the requirements that go into the design of a highly complex yet easy-to-use product, i.e. the automobile. Students will learn about very different interdisciplinary aspects that characterize the automobile and personal mobility. This is part of a multi-quarter seminar series, which build on one another but can be taken independently. This quarter, students will learn from 10 different founders / C-level executives about how they built their mobility startup to change the world of transportation. Previous classes included speakers from Tesla, Lyft, Pearl Auto, Turo, Nauto. In hearing these founder stories, students will get an insight not only into the world of entrepreneurship but also the multidisciplinary nature of the transportation industry. The course consists of 50-minute discussions with founders, with students encouraged to participate and ask questions of the founders. To obtain credit, students must attend 8 out of 10 classes including the first class.

ME 303. Biomechanics of Flight. 3 Units.
Study of biological flight as an inspiration for designing robots. The goal is to give students a broad understanding of the biomechanics of natural flight, and an in-depth understanding of bird flight. This course elucidates how students can pick and choose exciting biological questions, use biological and engineering techniques to answer them, and use the results to identify bio-inspired design applications. Prerequisites: Fluid mechanics OR Aerodynamics AND Fluent Matlab skills. Course website URL: http://lentinklab.stanford.edu/impact/stanford_teaching.

ME 304. The Designer’s Voice. 1 Unit.
This course for Masters students in the Stanford Design Program helps students develop a point of view about their design career that will enable them to articulate their design vision, inspire a design studio, or infuse a business with a culture of design-thinking. This class focuses on the integration of work and worldview, professional values, design language, and the development of the designer’s voice. Includes seminar-style discussions, role-playing, short writing assignments, guest speakers, and individual mentoring and coaching.
ME 304D. Designing Your Life. 1 Unit.
The course employs a design thinking approach to help fellows develop a point of view about their life and career. The course focuses on an introduction to design thinking, the integration of work and worldview, and practices that support vocation formation. Includes seminar-style discussions, role-playing, short writing assignments, guest speakers, and individual mentoring and coaching. Open to DCI (Distinguished Career Institute) Fellows only. Additional course information at http://www.designingyourlife.org.

ME 306A. Engineering Design Theory in Practice. 3 Units.
What is high performance in design? How could you improve your performance as a designer? Theories and frameworks from research into engineering design and design thinking are translated into action for developing insights into your design behavior and to develop strategies to improve design performance. Focus on performance in four aspects of design thinking: design as social activity, cognitive activity, physical activity and learning activity. Practice of effective team behaviors for concept generation, decision-making, and conflict-handling. Cognitive strategies from design as problem-solving, design as reflection-in-action, and C-K Theory. Prototyping performance improvements through media cascade and boundary object frameworks. Application of Perception-Action framework for improving self-learning in design. Students engage in multiple projects and a lab component.

ME 306B. Engineering-Design Capital-Formation Theory in Practice. 3 Units.
Engineers, Scientists, Entrepreneurs, and Investors tasked with the intentional creation and delivery of new knowledge, products, services, and experiences to large markets need an understanding of the capital formation process. Students will learn frameworks and theories underlying design thinking for capital formation. Four perspectives will be considered: design as cognitive agility, design as social alignment, design as reflective awareness, and design as multiphase flow. Students will practice high performance team behaviors for capital formation, and they will engage in multiple projects to apply theories to practical situations.

ME 308. Spatial Motion. 3 Units.
The geometry of motion in Euclidean space. Fundamentals of theory of screws with applications to robotic mechanisms, constraint analysis, and vehicle dynamics. Methods for representing the positions of spatial systems of rigid bodies with their inter-relationships; the formulation of Newton-Euler kinetics applied to serial chain systems such as industrial robotics.

ME 309. Finite Element Analysis in Mechanical Design. 3 Units.
Basic concepts of finite elements, with applications to problems confronted by mechanical designers. Linear static, modal, and thermal formulations emphasized; nonlinear and dynamic formulations introduced. Application of a commercial finite element code in analyzing design problems. Issues: solution methods, modeling techniques, features of various commercial codes, basic problem definition. Individual projects focus on the interplay of analysis and testing in product design/development. Prerequisites: Math 51, or equivalent. Recommended: ME80 or CEE101A, or equivalent in structural and/or solid mechanics; some exposure to principles of heat transfer.

ME 310A. Engineering Design Entrepreneurship and Innovation: exploring the problem space. 4 Units.
Reality is the best teacher. The best performers are coached. The best learners are on teams of 3-4 persons. We offer an extraordinary Coaching Team to maximize the value of your time at Stanford. Your year long mission is to create the personal self-efficacy you need to engage w {equation} world-design challenges. Your team is one element in a t-teams Fluid that includes a corporate staff-team and in most cases, a 2nd academic team at an international university. You will be challenged to re-invent-X, to be a start-up in Silicon Valley. Expect 10 different industry funded design challenges at the human interface to Robots, AI, Internet of Things, Autonomous vehicles and Smart Cities. ME310A is dedicated to exploring the problem-space using strategic-foresight, design thinking, team-dynamics-management, rapid prototyping, and human-centric problem RE-framing. We expect you to take ME310ABC.

ME 310B. Engineering Design Entrepreneurship and Innovation: exploring the solution space. 4 Units.
In ME310A your team RE-framed a human-centric need/problem. You have your X. Now explore the solution space. Search for the dark-horse (the impossible solution that actually might work). ME310B and ME310C are a single course with one grade in June. Your interdisciplinary team-of-teams is challenged by your industry partners to achieve break-through-innovation. In late March, Stanford students typically visit their international partners to converge on one solution path to be made REAL by June.

ME 310C. Engineering Design Entrepreneurship and Innovation: make it REAL. 4 Units.
REAL hardware, software, and user testing are the missions for Spring Quarter. Make it REAL. Engage any discipline and any technology to succeed. Enable user testing, technical and business evaluation. Keep using strategic-foresight, design thinking, team-dynamics management, rapid prototyping, and problem/solution re-framing. Present your test results and pre-production prototype to the world at the Stanford Design EXPerience in June (760 people attended in 2017). Tell the world what you did, why you did it, and what you learned from the doing.

ME 310I. The Essential Elements of New Product Development: Business and Industry Perspectives. 1 Unit.
Restricted to graduate students. Topics include new product development agenda, new product management skills, leadership and team management, n cultural awareness, organizational culture, industrial challenges and opportunities. Seminar will include in-class discussions, design thinking sessions and guest speakers from industry.

ME 311. Leading Design Teams. 3 Units.
The objective of this course is to help students forge a new identity as a design leader. Most people find the transition from individual contributor to team leader challenging because it is the first time that work needs to get done through others rather than doing things yourself. In a team leader role, you need to focus on getting things done and motivating, developing, and communicating with people. There is a balancing act between tasks and people and yet there is no simple rule to follow. Letting go of your identity as an individual contributor and helping you embrace a new one as a team leader is the first step into a design leadership role. This course will give you the language and concepts that will allow you to reflect on your own design leadership experience and growth while practicing it.

ME 312. Communication in Design. 3 Units.
Communication of design information, ideas, and concepts is central to successful design projects. In this course you will learn about various forms of communication and how to apply them in the design process. Topics covered include: structuring communication, selecting key points to communicate, communicating technical information to a non-technical audience. Approaches include: videography, presentations, public speaking. Visual approaches: sketching, storytelling, journey maps, figures and charts. This course does not cover within-team communication.
ME 313. Human Values and Innovation in Design. 3 Units.
Introduction to the philosophy and practice of the Design Impact program. Hands-on design projects are used as vehicles for learning design thinking’s tools and methodology. The relationships among technical, human, aesthetic, and business concerns, and drawing, prototyping, and story-telling will be explored. The focus is on design thinking process and mindsets including: empathy, point of view, ideation, prototyping and testing. For master’s students in the Design Impact program only. For a general introduction to design thinking, see ME 377: Design Thinking Studio, taught Autumn and Winter quarters.

ME 315. The Designer in Society. 3 Units.
This class focuses on individuals and their psychological well being. The class delves into how students perceive themselves and their work, and how they might use design thinking to lead a more creative and committed life. As a participant you read parts of a different book each week and then engage in exercises designed to unlock learnings. In addition, there are two self-selected term project dealing with either eliminating a problem from your life or doing something you have never done before. Apply the first day during class. Attendance at first session is mandatory; otherwise, at most one absence is acceptable.

ME 316A. Design Impact Master’s Project I. 2-6 Units.
ME316A, also known as the Idea to Impact class is a Fall/Winter class and a two-quarter commitment is required. The class is a deep dive in design thinking that uses student-led projects to teach design process and methods, based on the themes of Empathic Autonomy in Healthcare, and Empowering Power in Energy. Students will learn the methodologies of design thinking by bringing a product, service, or user-experience design to fruition/impact in the real world, through the market, with corporate partners, or as a research project. Students apply to Idea to Impact in the Summer, and teams are formed after interviews and applications are reviewed. Prerequisite: Graduate student standing.

ME 316B. Design Impact Master’s Project II. 2-6 Units.
This is a continuation of ME316A, also known as the Idea to Impact class. The class is a deep dive in design thinking that uses student-led projects to teach design process and methods, based on the themes of Empathic Autonomy in Healthcare, and Empowering Power in Energy. Students will learn the methodologies of design thinking by bringing a product, service, or user-experience design to fruition/impact in the real world, through the market, with corporate partners, or as a research project. Winter quarter concentrates on building a proof of concept of the project. Prerequisite: Graduate student standing.

ME 316C. Design Impact Master’s Project III. 2-6 Units.
For graduate Design Impact students, and select students by application, who have completed ME316A & B. Students, under the supervision of the design faculty, spend the quarter documenting their Idea to Impact projects, implementing them in the world with their partners, or writing up their research.

ME 318. Computer-Aided Product Creation. 4 Units.
Design course focusing on an integrated suite of computer tools: rapid prototyping, solid modeling, computer-aided machining, and computer numerical control manufacturing. Students choose, design, and manufacture individual products, emphasizing individual design process and computer design tools. Structured lab experiences build a basic CAD/CAM/CNC proficiency. Limited enrollment. Prerequisite: consent of instructor.

ME 320. Introduction to Robotics. 3 Units.
Robotics foundations in modeling, design, planning, and control. Class covers relevant results from geometry, kinematics, statics, dynamics, motion planning, and control, providing the basic methodologies and tools in robotics research and applications. Concepts and models are illustrated through physical robot platforms, interactive robot simulations, and video segments relevant to historical research developments or to emerging application areas in the field. Recommended: matrix algebra.
Same as: CS 223A

ME 321. Optofluidics: Interplay of Light and Fluids at the Micro and Nanoscale. 3 Units.
Many optical systems in biology have sophisticated designs with functions that conventional optics cannot achieve; no synthetic materials, for example, can provide the camouflage capability exhibited by some animals. This course overviews recent efforts--some inspired by examples in biology--in using fluids, soft materials and nanostructures to create new functions in optics. Topics include electrowetting lenses, electronic inks, colloidal photonic crystals, bioinspired optical nanostructures, nanophotonic biosensors, lens-less optofluidic microscopes. The use of optics to control fluids is also discussed: optoelectronic tweezers, particle trapping and transport, microrheology, optofluidic sorters, fabrication and self-assembly of novel micro and nanostructures.

ME 322. Kinematic Synthesis of Mechanisms. 3 Units.
The rational design of linkages. Techniques to determine linkage proportions to fulfill design requirements using analytical, graphical, and computer based methods.

ME 323. Modeling and Identification of Mechanical Systems for Control. 3 Units.
Lecture/Lab. The art and science behind developing mathematical models for control system design. Theoretical and practical system modeling and parameter identification. Frequency domain identification, parametric modeling, and black-box identification. Analytical work and laboratory experience with identification, controller implementation, and the implications of unmodeled dynamics and non-linearities. Prerequisites: linear algebra and system simulation with MATLAB/ SIMULINK; ENGR 105.

ME 324. Precision Engineering. 4 Units.
Advances in engineering are often enabled by more accurate control of manufacturing and measuring tolerances. Concepts and technology enable precision such that the ratio of overall dimensions to uncertainty of measurement is large relative to normal engineering practice. Typical application areas: non-spherical optics, computer information storage devices, and manufacturing metrology systems. Application experience through design and manufacture of a precision engineering project, emphasizing the principles of precision engineering. Structured labs; field trips. Prerequisite: consent of instructors.

ME 325. Making Multiples: Injection Molding. 3 Units.
Design course focusing on the process of injection molding as a prototyping and manufacturing tool. Coursework will include creating and evaluating initial design concepts, detailed part design, mold design, mold manufacturing, molding parts, and testing and evaluating the results. Students will work primarily on individually selected projects, using each project as a tool to continue developing and exercising individual design process. Lectures and field trips will provide students with context for their work in the Stanford Product Realization Lab. Prerequisite: ME318 or consent of instructors.

ME 326. Telerobotics and Human-Robot Interactions. 3 Units.
Focus is on dynamics and controls. Evaluation and implementation of required control systems. Topics include master-slave systems, kinematic and dynamic similarity; control architecture, force feedback, haptics, sensory substitutions; stability, passivity, sensor resolution, servo rates; time delays, prediction, wave variables. Hardware-based projects encouraged, which may complement ongoing research or inspire new developments. Limited enrollment. Prerequisites: ENGR 205, 320 or CS 223A, or consent of instructor. (Niemeyer).
ME 327. Design and Control of Haptic Systems. 3 Units.
Study of the design and control of haptic systems, which provide touch feedback to human users interacting with virtual environments and teleoperated robots. Focus is on device modeling (kinematics and dynamics), synthesis and analysis of control systems, design and implementation, and human interaction with haptic systems. Coursework includes homework/laboratory assignments and a hands-on project. Directed toward undergraduate and graduate students in engineering and computer science. Prerequisites: dynamic systems, feedback controls, and MATLAB programming.

ME 328. Medical Robotics. 3 Units.
Study of the design and control of robots for medical applications. Focus is on robotics in surgery and interventional radiology, with introduction to other healthcare robots. Delivery is through instructor lectures and weekly guest speakers. Coursework includes homework and laboratory assignments, an exam, and a research-oriented project. Directed toward graduate students and advanced undergraduates in engineering and computer science; no medical background required. Prerequisites: dynamic systems and MATLAB programming. Suggested experience with C/C++ programming, feedback control design, and linear systems. Cannot be taken concurrently with CS 571.

ME 329. Mechanical Analysis in Design. 3 Units.
This project based course will cover the application of engineering analysis methods learned in the Mechanics and Finite Element series to real world problems involving the mechanical analysis of a proposed device or process. Students work in teams, and each team has the goal of solving a problem defined jointly with a sponsoring company or research group. Each team will be mentored by a faculty mentor and a mentor from the sponsoring organization. The students will gain experience in the formation of project teams; interdisciplinary communication skills; intellectual property, and project management. Course has limited enrollment.

ME 330. Advanced Kinematics. 3 Units.
Kinematics from mathematical viewpoints. Introduction to algebraic geometry of point, line, and plane elements. Emphasis is on basic theories which have potential application to mechanical linkages, computational geometry, and robotics.

ME 331A. Advanced Dynamics & Computation. 3 Units.
Newton, Euler, momentum, and road-map methods and computational tools for 3-D force and motion analysis of multibody systems. Power, work, and energy. Numerical solutions (e.g., MATLAB, etc.) of nonlinear algebraic and differential equations governing the static and dynamic behavior of multiple degree of freedom systems.

ME 331B. Advanced Dynamics, Simulation & Control. 3 Units.
Advanced methods and computational tools for the efficient formulation of equations of motion for multibody systems. D'Alembert principle. Power, work, and energy. Kane's and Lagrange's method. Computed torque control. Systems with constraints. Quaternions. Numerical solutions (e.g., MATLAB, etc.) of nonlinear algebraic and differential equations governing the behavior of multiple degree of freedom systems. Team-based computational multi-body lab project (inclusion of feed-forward control optional).

ME 332. Introduction to Computational Mechanics. 3 Units.
Provides an introductory overview of modern computational methods for problems arising primarily in mechanics of solids and is intended for students from various engineering disciplines. The course reviews the basic theory of linear solid mechanics and introduces students to the important concept of variational forms, including the principle of minimum potential energy and the principles of virtual work. Specific model problems that will be considered include deformation of bars, beams and membranes, plates, and problems in plane elasticity (plane stress, plane strain, axisymmetric elasticity). The variational forms of these problems are used as the starting point for developing the finite element method (FEM) and boundary element method (BEM) approaches providing an important connection between mechanics and computational methods.

Same as: CME 232

ME 333. Mechanics - Fundamentals and Variational Methods. 3 Units.
The goal of the class is to introduce the foundations of the calculus of variations and its application to obtaining the equations of motion of mechanical systems, beginning with systems of particles, and progressing towards one-dimensional continuum system, to finish with three-dimensional continuum systems. In particular, the basics of tensor algebra and calculus are introduced, and utilized to obtain the linear elasticity equations. The equations that describe the deformation of reduced-order structural models, such as beams and plates, are obtained through the proper imposition of kinetic constraints on the variational principle.

ME 335A. Finite Element Analysis. 3 Units.

ME 335B. Finite Element Analysis. 3 Units.

ME 335C. Finite Element Analysis. 3 Units.
Newton's method for nonlinear problems; convergence, limit points and bifurcation; consistent linearization of nonlinear variational forms by directional derivative; tangent operator and residual vector; variational formulation and finite element discretization of nonlinear boundary value problems (e.g. nonlinear heat equation, nonlinear elasticity); enhancements of Newton's method: line-search techniques, quasi-Newton and arc-length methods.

ME 337. Mechanics of Growth. 3 Units.
Growth is a distinguishing feature of all living things. This course introduces the concept of living systems through the lens of mechanics. We discuss the basic continuum theory for living systems including the kinematics, balance equations, and constitutive equations and the computational modeling of growth phenomena including growing plants, remodeling bone, healing wounds, growing tumors, atherosclerosis, expanding skin, failing hearts, developing brains, and the effects of high performance training.
ME 338. Continuum Mechanics. 3 Units.
Introduction to vectors and tensors: kinematics, deformation, forces, and stress concept of continua; balance principles; aspects of objectivity; hyperelastic materials; thermodynamics of materials; variational principles.

ME 338B. Continuum Mechanics. 3 Units.
Constitutive theory; equilibrium constitutive relations; material frame indifference and material symmetry; finite elasticity; formulation of the boundary value problem; linearization and well-posedness; symmetries and configurational forces; numerical considerations.

ME 339. Introduction to parallel computing using MPI, openMP, and CUDA. 3 Units.
This class will give hands on experience with programming multicore processors, graphics processing units (GPU), and parallel computers. Focus will be on the message passing interface (MPI, parallel clusters) and the compute unified device architecture (CUDA, GPU). Topics will include: network topologies, modeling communication times, collective communication operations, parallel efficiency, MPI, dense linear algebra using MPI. Symmetric multiprocessing (SMP), pthreads, openMP, CUDA, combining MPI and CUDA, dense linear algebra using CUDA, sort, reduce and scan using CUDA. Pre-requisites include: C programming language and numerical algorithms (solution of differential equations, linear algebra, Fourier transforms). Same as: CME 213

ME 340. Mechanics - Elasticity and Inelasticity. 3 Units.
Introduction to the theories of elasticity, plasticity and fracture and their applications. Elasticity. Definition of stress, strain, and elastic energy; equilibrium and compatibility conditions; and formulation of boundary value problems. Stress function approach to solve 2D elasticity problems and Greenâs function approach in 3D. Applications to contact and crack. Plasticity. Yield surface, associative flow rule, strain hardening models, crystal plasticity models. Applications to plastic bending, torsion and pressure vessels. Fracture. Linear elastic fracture mechanics, J-integral, Dugdale-Barrenblatt crack model. Applications to brittle fracture and fatigue crack growth. Computer programming in Matlab is used to aid analytic derivation and numerical solutions.

ME 341. Design Experiments. 3 Units.
Design experiments to learn about the relationship between users and products, with an emphasis on quantitative output that is tested with statistics. Students will be exposed to all components of the experimental design process: research proposition, literature review, detailed hypotheses, method selection, experimental instruments, subject selection, pilot studies, analysis approaches, reporting results, and discussing conclusions. Students will receive human subjects training and complete the IRB certificate. Possible experiment design tools include in-person observation and interviews, web surveys, and eye-tracking.

ME 341X. Statistics for Design Experiments. 1 Unit.
Feedback from users is fundamental to good design. Often this feedback is collected in the form of a survey, resulting in data requiring both analysis and synthesis. Course content will be delivered via live and online video lectures, with group classroom time dedicated to completing the lab assignments. You will learn the specific skills necessary to design, launch and collect data using an online survey tool (Qualtrics), how to analyze the results using R for Statistical Computing, and to create simple graphical representations of statistical data. This course is designed to complement ME341 Design Experiments although enrollment in ME341 is not a prerequisite for this course. One-unit credit requires completion of an analysis project using data collected as part of this class. Auditors welcome.

ME 342. Theory and Application of Inelasticity. 3 Units.
Theories of plasticity and fracture phenomena from both phenomenological and micromechanical viewpoints. Yield surface, flow rules, strain hardening models, and applications to creep. Plastic zone near crack tip. Linear fracture mechanics and other criteria for crack initiation and growth. Application to fatigue. Classical analytic solutions will be discussed together with numerical solutions of plane elastoplastic problems by Matlab.

ME 342A. Mechanobiology and Biofabrication Methods. 3 Units.
Cell mechanobiology topics including cell structure, mechanical models, and chemo-mechanical signaling. Review and apply methods for controlling and analyzing the biomechanics of cells using traction force microscopy, AFM, micropatterning and cell stimulation. Practice and theory for the design and application of methods for quantitative cell mechanobiology. Same as: BIOE 342A, BIOPHYS 342A

ME 342D. MEMS Fabrication/Projects. 1-3 Unit.
Emphasis is on process planning, in process testing, nanofabrication training, exposure to MEMS industry applications. Prerequisite: ENGR 341.

ME 343. Machine Learning for Mechanical Engineering. 3 Units.
Supervised, semi-supervised and unsupervised learning, reinforcement learning, deep neural networks, generative adversarial networks, Gaussian processes, linear and kernel support vector machines, random forests, applications to mechanical engineering problems, including autonomous driving, computational mechanics, and modeling physical systems.

ME 344. Introduction to High Performance Computing. 3 Units.
ME 344 is an introductory course on High Performance Computing Clusters, providing a solid foundation in parallel computer architectures, parallel programming models, application performance monitoring & optimization techniques. This course will discuss fundamentals of parallel systems covering topics ranging from what an HPC cluster consists of to how to efficiently solve complex large scale problems in the areas of computational fluid dynamics, image processing, machine learning and analytics on these systems. The course will consist of lectures, practical hands-on homework assignments, and hands-on laboratory work where students will build their own HPC cluster from the ground up. Students will explore shared- and distributed-memory parallel programming model based solutions to different applications, along with a deeper dive on solutions developed in an exascalerady parallel programming model named Legion. Additionally, they will gain exposure to a comprehensive set of development tools from Intel R Parallel Studio XE Suite including the Intel R Vtune Amplifier and the Intel Advisor toolkit running on Intel R Xeon R and Xeon Phi Processors. In addition to classroom instruction and laboratory work, students will have access to the latest cutting-edge hardware and will interact with HPC experts from the industry. As it¿s desirable to have a mix of students, the course will not assume a background in computer science. However, exposure to linux, and experience with scripting and/or programming languages like C/C++/Java are helpful to complete projects as this is a very hands-on practical application and use of HPC clusters. Students on a systems, computer engineering, or computational track do well with this course.
ME 344S. HCP-AI Summer Seminar Series. 1 Unit.
How will high performance computing and artificial intelligence change the way you live, work and learn? What skill sets will you need in the future? This summer, we kick off a new seminar series, the HPC-AI Summer Seminar Series, presented by the Stanford High Performance Computing Center and the HPC-AI Advisory Council. Each week combines thought leadership and practical insights with topics of great societal importance and responsibility. From applications, tools and techniques to delving into emerging trends and technologies. These experts and influencers who are shaping our HPC and AI future will share their vision and will address audience questions. Students of all academic backgrounds and interests are encouraged to register for this 1-unit course (ME 5xx). No prerequisites required. Register early. The series is open to Stanford faculty, staff, and HPC-AI Advisory Council members, space permitting.

ME 345. Fatigue Design and Analysis. 3 Units.

ME 346A. Introduction to Statistical Mechanics. 3 Units.
The main purpose of this course is to provide students with enough statistical mechanics background to the Molecular Simulations classes (ME 346B,C), including the fundamental concepts such as ensemble, entropy, and free energy, etc. The main theme of this course is how the laws at the macroscopic (thermodynamics) can be obtained by analyzing the spontaneous fluctuations at the microscopic (dynamics of molecules). Topics include thermodynamics, probability theory, information entropy, statistical ensembles, phase transition and phase equilibrium. Recommended: PHYSICS 110 or equivalent.

ME 346B. Introduction to Molecular Simulations. 3 Units.

ME 346C. Advanced Techniques for Molecular Simulations. 3 Units.
Advanced methods for computer simulations of solids and molecules. Methods for long-range force calculation, including Ewald methods and fast multipole method. Methods for free energy calculation, such as thermodynamic integration. Methods for predicting rates of rare events (e.g. nucleation), including nudged elastic band method and umbrella sampling method. Students will work on projects in teams.

ME 348. Experimental Stress Analysis. 3 Units.

ME 351A. Fluid Mechanics. 3 Units.
Exact and approximate analysis of fluid flow covering kinematics, global and differential equations of mass, momentum, and energy conservation. Forces and stresses in fluids. Euler’s equations and the Bernoulli theorem applied to inviscid flows. Vorticity dynamics. Topics in irrotational flow: stream function and velocity potential for exact and approximate solutions; superposition of solutions; complex potential function; circulation and lift. Some boundary layer concepts.

ME 351B. Fluid Mechanics. 3 Units.
Laminar viscous fluid flow. Governing equations, boundary conditions, and constitutive laws. Exact solutions for parallel flows. Creeping flow limit, lubrication theory, and boundary layer theory including free-shear layers and approximate methods of solution; boundary layer separation. Introduction to stability theory and transition to turbulence, and turbulent boundary layers. Prerequisite: 351A.

ME 352A. Radiative Heat Transfer. 3 Units.
The fundamentals of thermal radiation heat transfer: blackbody radiation laws; radiative properties of non-black surfaces; analysis of radiative exchange between surfaces and in enclosures; combined radiation, conduction, and convection; radiative transfer in absorbing, emitting, and scattering media. Advanced material for students with interests in heat transfer, as applied in high-temperature energy conversion systems. Take 352B,C for depth in heat transfer. Prerequisites: graduate standing and undergraduate course in heat transfer. Recommended: computer skills.

ME 352B. Fundamentals of Heat Conduction. 3 Units.
Physical description of heat conduction in solids, liquids, and gases. The heat diffusion equation and its solution using analytical and numerical techniques. Data and microscopic models for the thermal conductivity of solids, liquids, and gases, and for the thermal resistance at solid-solid and solid-liquid boundaries. Introduction to the kinetic theory of heat transport, focusing on applications for composite materials, semiconductor devices, micromachined sensors and actuators, and rarefied gases. Prerequisite: consent of instructor.

ME 352C. Convective Heat Transfer. 3 Units.

ME 353. Design for Additive Manufacturing. 4 Units.
Additive manufacturing and the associated emergence of algorithmic CAD software are changing the landscape for design engineers. The next generation of software is not solely based on geometry, but asks engineers to specify the desired performance parameters of their solution and leaves it up to the computer to create a geometry that optimizes that solution. Usually such geometries would be impossibly expensive or impossible to produce, but as additive manufacturing technologies and tools advance, we are approaching a world in which there will be virtually no geometric barriers associated with manufacturing cost.

ME 354. Experimental Methods in Fluid Mechanics. 4-5 Units.
Experimental methods associated with the interfacing of laboratory instruments, experimental control, sampling strategies, data analysis, and introductory image processing. Instrumentation including point-wise anemometers and particle image tracking systems. Lab. Prerequisites: previous experience with computer programming and consent of instructor. Limited enrollment.

ME 355. Compressible Flow. 3 Units.
Topics include quasi-one-dimensional isentropic flow in variable area ducts, normal shock waves, oblique shock and expansion waves. Flow in ducts with friction and heat transfer, unsteady one-dimensional flow, and steady two-dimensional supersonic flow.
ME 356. Hypersonic Aerothermodynamics. 3 Units.

ME 357. Gas-Turbine Design Analysis. 3 Units.
This course is concerned with the design analysis of gas-turbine engines. After reviewing essential concepts of thermo- and aerodynamics, we consider a turboshaft gas-turbine engine that is representative of a business aircraft. We will first conduct a performance analysis to match the engine design with aircraft performance requirements. This is followed by examining individual engine components, including compressor, combustor, turbines, and nozzles, thereby increase the level of physical description. Aspects of modern engine concepts, environmental impacts, and advanced engine-analysis methods will be discussed. Students will have the opportunity to develop a simulation code to perform a basic design analysis of a gas-turbine engine. Course Prerequisites: ENGR 30, ME 70, ME 131B, CME 100.
Same as: ME 257

ME 358. Heat Transfer in Microdevices. 3 Units.
Application-driven introduction to the thermal design of electronic circuits, sensors, and actuators that have dimensions comparable to or smaller than one micrometer. The impact of thin-layer boundaries on thermal conduction and radiation. Convection in microchannels and microscopic heat pipes. Thermal property measurements for microdevices. Emphasis is on Si and GaAs semiconductor devices and layers of unusual, technically-promising materials such as chemical-vapor-deposited (CVD) diamond. Final project based on student research interests. Prerequisite: consent of instructor.

ME 360. Physics of Microfluidics. 3 Units.
Survey of the physics underlying a wide range of microfluidic devices. Course will review basic, simple principles around fluid flow; convective heat and mass transfer; flows of bubbles, drops, and particles; Brownian particles; Taylor dispersion; capillarity; electrokinetics; mixing; jetting; and chemical reactions. Applications of these systems include molecular diagnostics, genetic and proteomic analysis, single-cell analysis, chemical detection, microelectronics cooling, and studies of basic physics and chemistry. We will review recent scientific literature with a goal of deducing simplified explanations, scaling arguments, and back-of-the-envelope approximations of the relevant physics and device performance.

ME 361. Turbulence. 3 Units.

ME 362A. Physical Gas Dynamics. 3 Units.
Concepts and techniques for description of high-temperature and chemically reacting gases from a molecular point of view. Introductory kinetic theory, chemical thermodynamics, and statistical mechanics as applied to properties of gases and gas mixtures. Transport and thermodynamic properties, law of mass action, and equilibrium chemical composition. Maxwellian and Boltzmann distributions of velocity and molecular energy. Examples and applications from areas of current interest such as combustion and materials processing.

ME 362B. Nonequilibrium Processes in High-Temperature Gases. 3 Units.
Chemical kinetics and energy transfer in high-temperature gases. Collision theory, transition state theory, and unimolecular reaction theory. Prerequisite: 362A or consent of instructor.

ME 363. Partially Ionized Plasmas and Gas Discharges. 3 Units.
Introduction to partially ionized gases and the nature of gas discharges. Topics: the fundamentals of plasma physics emphasizing collisional and radiative processes, electron and ion transport, ohmic dissipation, oscillations and waves, interaction of electromagnetic waves with plasmas. Applications: plasma diagnostics, plasma propulsion and materials processing. Prerequisite: 362A or consent of instructor.

ME 364. Optical Diagnostics and Spectroscopy. 3 Units.
The spectroscopy of gases and laser-based diagnostic techniques for measurements of species concentrations, temperature, density, and other flow field properties. Topics: electronic, vibrational, and rotational transitions; spectral lineshapes and broadening mechanisms; absorption, fluorescence, Rayleigh and Raman scattering methods; collisional quenching. Prerequisite: 362A or equivalent.

ME 365. Making Multiples: Sand Casting. 4 Units.
ME 365 is a product realization based course integrating designing and making with a focus on a scaled manufacturing process, sand casting. It’s graduates will develop technical knowledge regarding design principles, tooling design and creation, mold making, and process parameters. This goal will be achieved by a sequence of three hands-on design and manufacturing projects, supported by lectures, curricular materials, and structured laboratories, and portfolio generation. Prerequisites: ME203, ME318, OR consent of instructor.

ME 366. Optical Diagnostics and Spectroscopy Laboratory. 4 Units.

ME 368. d.Leadership. 4 Units.
d.Leadership is a course that teaches the coaching and leadership skills needed to drive good design process in groups. d.leaders will work on real projects driving design projects within organizations and gain real world skills as they experiment with their leadership style. Take this course if you are inspired by past design classes and want skills to lead design projects beyond Stanford. Preference given to students who have taken other Design Group or d.school classes. Admission by application. See dschool.stanford.edu/classes for more information. Same as: MS&E 489
ME 368A. Biodesign Innovation: Needs Finding and Concept Creation. 4 Units.
In this two-quarter course series (BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new health technologies to address them, and plan for their implementation into patient care. During the first quarter (winter), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent health technology experts and/or investors. Class sessions include faculty-led instruction and case studies, coaching sessions by industry specialists, expert guest lecturers, and interactive team meetings. Enrollment is by application only, and students are expected to participate in both quarters of the course. Visit http://biodesign.stanford.edu/programs/stanford-courses/biodesign-innovation.html to access the application examples of past projects and student testimonials. More information about Stanford Biodesign, which has led to the creation of nearly 50 venture-backed healthcare companies and has helped hundreds of student launch health technology careers, can be found at http://biodesign.stanford.edu/.
Same as: BIOE 374A, MED 272A

ME 368B. Biodesign Innovation: Concept Development and Implementation. 4 Units.
In this two-quarter course series (BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new health technologies to address them, and plan for their implementation into patient care. During the first quarter (winter), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent health technology experts and/or investors. Class sessions include faculty-led instruction and case studies, coaching sessions by industry specialists, expert guest lecturers, and interactive team meetings. Enrollment is by application only, and students are expected to participate in both quarters of the course. Visit http://biodesign.stanford.edu/programs/stanford-courses/biodesign-innovation.html to access the application examples of past projects and student testimonials. More information about Stanford Biodesign, which has led to the creation of nearly 50 venture-backed healthcare companies and has helped hundreds of student launch health technology careers, can be found at http://biodesign.stanford.edu/.
Same as: BIOE 374B, MED 272B

ME 370A. Energy Systems I: Thermodynamics. 3 Units.
Thermodynamic analysis of energy systems emphasizing systematic methodology for and application of basic principles to generate quantitative understanding. Exergy, mixtures, reacting systems, phase equilibrium, chemical exergy, and modern computational methods for analysis. Prerequisites: undergraduate engineering thermodynamics and computer skills such as Matlab.

ME 370B. Energy Systems II: Modeling and Advanced Concepts. 4 Units.
Development of quantitative device models for complex energy systems, including fuel cells, reformers, combustion engines, and electrolyzers, using thermodynamic and transport analysis. Student groups work on energy systems to develop conceptual understanding, and high-level, quantitative and refined models. Advanced topics in thermodynamics and special topics associated with devices under study. Prerequisite: 370A.

ME 370C. Energy Systems III: Projects. 3-5 Units.
Refinement and calibration of energy system models generated in ME 370B carrying the models to maturity and completion. Integration of device models into a larger model of energy systems. Prerequisites: 370A,B, consent of instructor.

ME 371. Combustion Fundamentals. 3 Units.
Heat of reaction, adiabatic flame temperature, and chemical composition of products of combustion; kinetics of combustion and pollutant formation reactions; conservation equations for multi-component reacting flows; propagation of laminar premixed flames and detonations. Prerequisite: 362A or 370A, or consent of instructor.

ME 372. Combustion Applications. 3 Units.
The role of chemical and physical processes in combustion; ignition, flammability, and quenching of combustible gas mixtures; premixed turbulent flames; laminar and turbulent diffusion flames; combustion of fuel droplets and sprays. Prerequisite: 371.

ME 373. Nanomaterials Synthesis and Applications for Mechanical Engineers. 3 Units.
This course provides an introduction to both combustion synthesis of functional nanomaterials and nanotechnology. The first part of the course will introduce basic principles, synthesis/fabrication techniques and application of nanoscience and nanotechnology. The second part of the course will discuss combustion synthesis of nanostructures in zero-, one- and/ or two- and three- dimensions, their characterization methods, physical and chemical properties, and applications in energy conversion systems.

ME 374. Dynamics and Kinetics of Nanoparticles. 3 Units.

ME 375A. StoryViz: COMMUNICATION REDESIGNED. 2-3 Units.
StoryViz is about creating authentic & compelling communication in many media: this year’s topics include sketching, video, visual design & performance. Fantastic guests and a bevy of assignments will prepare students to communicate their work and ideas genuinely, concisely, and with a keen sense of wit. Limited enrollment; application required; see http://dschool.stanford.edu/classes. Please see notes.

ME 375B. Institute of Design Project 2. 1-6 Unit.
Hands-on, project-based series for d.school students emphasizing innovation and design thinking. Resolving constraints among technical, business, and human concerns to create solutions that benefit society. Real-world design projects in areas such as K-12 education, social entrepreneurship, business prototyping, sustainability, and health and wellness. Design reviews and final course presentations. Industry and adviser interaction. Limited enrollment; application required; see http://dschool.stanford.edu/classes.

ME 375C. Institute of Design Project 3. 1-6 Unit.
Hands-on, project-based series for d.school students emphasizing innovation and design thinking. Resolving constraints among technical, business, and human concerns to create solutions that benefit society. Real-world design projects in areas such as K-12 education, social entrepreneurship, business prototyping, sustainability, and health and wellness. Design reviews and final course presentations. Industry and adviser interaction. Limited enrollment; application required; see http://dschool.stanford.edu/classes.
ME 376A. Imagining the Future of Learning: SparkTruck - Designing Mobile Interventions for Education. 4 Units.
Created at the d.school last year, SparkTruck has traveled over 15,000 miles across the USA, teaching thousands of kids how to build stuff and unleash their creativity. In this class, students will explore the potential of a mobile platform for affecting change in the educational ecosystem. Topics will include introductions to the design process, modern prototyping tools, and the complex education ecosystem. Students will work in teams in this project-based class, and an emphasis will be placed on real-world prototyping through hands-on field work in local schools. Interested and qualified students will have the opportunity to embark on a cross-country road trip in the SparkTruck this summer. Open to all graduate students and well-qualified undergrads of any major. Enrollment is limited. Apply at www.sparktruck.org/apply. Same as: EDUC 333B

ME 376C. Institute of Design Project 2. 1-6 Unit.
Hands-on, project-based series for d.school students. Design thinking, design processes, innovation methodologies, need finding, human factors, rapid prototyping, team dynamics, negotiation, and project management. Focus is on resolving constraints among technical, business, and human concerns to create solutions that benefit society. Real-world design projects. Weekly design reviews, final course presentations. Industry and adviser interaction. Limited enrollment; application required; see http://dschool.stanford.edu/classes.

ME 377. Design Thinking Studio. 4 Units.
Design Thinking Studio is an immersive introduction to design thinking. You will engage in the real world with your heart, hands and mind to learn and apply the tools and attitudes of design. The class is project-based and emphasizes adopting new behaviors of work. Fieldwork and collaboration with teammates are required and are a critical component of the class. Application required, see dschool.stanford.edu/classes for more information.

ME 378. Tell, Make, Engage: Action Stories for Entrepreneuring. 1-3 Unit.
Individual storytelling action and reflective observations gives the course an evolving framework of evaluative methods, from engineering design; socio cognitive psychology, and art that are formed and reformed by collaborative development within the class. Stories attached to an idea, a discovery or starting up something new, are considered through iterative narrative work, and small group challenges. This course will use qualitative and quantitative methods for story engagement, assessment, and class determined research projects with practice exercises, artifacts, short papers and presentations. Graduate and Co-Term students from all programs welcome.

ME 379. Fail Faster. 1 Unit.
Fail Faster will dive deeply into one of design thinking’s key tenets: Fail early, fail often. Students will explore ways to: [1] become comfortable with uncertainty, [2] develop tools to navigate situations of failure, and [3] learn to turn failures into opportunities. This exercised-based workshop will examine the physiological impact of failure and practice the psychological traits and the power of resilience through hands-on activities. Participants will acquire techniques to help them navigate, bounce back, grow and even flourish in the face of their failures.

ME 380. Current Topics in Exoskeleton and Prosthesis Research. 3 Units.
This discussion-based course introduces graduate students to current topics in prosthetic limb and exoskeleton research. We will review and discuss landmark studies and recent advances using the published literature. Topics include: clinical presentations of persons with disabilities; commercially available devices and their limitations; the design of advanced assistive devices; algorithmic techniques for patient-specific device optimization; state of the art in hardware, sensing and control of assistive devices; and assessment of device efficacy using biomechanical and psychophysical measurements. Students will analyze and discuss the literature and give presentations on research papers. Prerequisites: Graduate standing and permission of the instructor.

ME 381. Orthopaedic Bioengineering. 3 Units.
Engineering approaches applied to the musculoskeletal system in the context of surgical and medical care. Fundamental anatomy and physiology. Material and structural characteristics of hard and soft connective tissues and organ systems, and the role of mechanics in normal development and pathogenesis. Engineering methods used in the evaluation and planning of orthopaedic procedures, surgery, and devices. Same as: BIOE 381

ME 386. Neuromuscular Biomechanics. 3 Units.
The interplay between mechanics and neural control of movement. State of the art assessment through a review of classic and recent journal articles. Emphasis is on the application of dynamics and control to the design of assistive technology for persons with movement disorders. Same as: BIOE 386

ME 387. Soft Tissue Mechanics. 3 Units.
Structure/function relationships and mechanical properties of soft tissues, including nonlinear elasticity, viscoelasticity, and poroelasticity.

ME 389. Biomechanical Research Symposium. 1 Unit.
Guest speakers present contemporary research on experimental and theoretical aspects of biomechanical engineering and bioengineering. May be repeated for credit.

ME 390. Thermosciences Research Project Seminar. 1 Unit.
Review of work in a particular research program and presentations of other related work.

ME 390A. High Temperature Gasdynamics Laboratory Research Project Seminar. 1 Unit.
Review of work in a particular research program and presentations of other related work.

ME 391. Engineering Problems. 1-10 Unit.
Directed study for graduate engineering students on subjects of mutual interest to student and staff member. May be used to prepare for experimental research during a later quarter under 392. Faculty sponsor required.

ME 392. Experimental Investigation of Engineering Problems. 1-10 Unit.
Graduate engineering students undertake experimental investigation under guidance of staff member. Previous work under 391 may be required to provide background for experimental program. Faculty sponsor required.

ME 393. Topics in Biologically Inspired or Human Interactive Robotics. 1 Unit.
Application of observations from human and animal physiology to robotic systems. Force control of motion including manipulation, haptics, and locomotion. Weekly literature review forum led by student. May be repeated for credit. (Cutkosky, Waldron, Niemeyer).

ME 395. Seminar in Solid Mechanics. 1 Unit.
Required of Ph.D. candidates in solid mechanics. Guest speakers present research topics related to mechanics theory, computational methods, and applications in science and engineering. May be repeated for credit.

ME 397. Design Theory and Methodology Seminar. 1-3 Unit.
What do designers do when they do design? How can their performance be improved? ME 397 is a participatory graduate seminar where students create, examine, discuss, and evaluate aspects of these questions. Topics change each quarter, and include design methodology, innovation, human factors, interaction design (robots, agents, devices, cars), computer mediated work, and policy implications. May be repeated for credit.

ME 398. Ph.D. Research Rotation. 1-4 Unit.
Directed research experience for first-year Mechanical Engineering Ph.D. students with faculty sponsors. The student is responsible for arranging the faculty sponsor and registering under the faculty sponsor’s section number. Course may be repeated up to four times in the first year. A different faculty sponsor must be selected each time.
ME 399. Fuel Cell Seminar. 1 Unit.
Interdisciplinary research in engineering, chemistry, and physics. Talks on fundamentals of fuel cells by speakers from Stanford, other academic and research institutions, and industry. The potential to provide high efficiency and zero emissions energy conversion for transportation and electrical power generation.

ME 400. Thesis. 2-15 Units.
Investigation of some engineering problems. Required of Engineer degree candidates.
Same as: Engineer Degree

ME 405. Asymptotic Methods in Computational Engineering. 3 Units.
This course is not a standard teaching of asymptotic methods as thought in the applied math programs. Nor does it involve such elaborate algebra and analytical derivations. Instead, the class relies on students’ numerical programming skills and introduces improvements on numerical methods using standard asymptotic and scaling ideas. The main objective of the course is to bring physical insight into numerical programming. The majority of the problems to be explored involve one- and two-dimensional transient partial differential equations inspired by thermal-fluid and transport engineering applications. Topics include: 1-Review of numerical discretization and numerical stability, 2-Implicit versus explicit methods, 3-Introduction to regular and singular perturbation problems, 4-Method of matched asymptotic expansions, 5-Stationary thin interfaces: boundary layers, Debye layers, 6-Moving thin interfaces: shocks, phase-interfaces, 7-Reaction-diffusion problems, 8-Directional equilibrium and lubrication theory.

ME 406. Turbulence Physics and Modeling Using Numerical Simulation Data. 2 Units.
Prerequisite: consent of instructor.

ME 408. Spectral Methods in Computational Physics. 3 Units.
Data analysis, spectra and correlations, sampling theorem, nonperiodic data, and windowing; spectral methods for numerical solution of partial differential equations; accuracy and computational cost; fast Fourier transform, Galerkin, collocation, and Tau methods; spectral and pseudospectral methods based on Fourier series and eigenfunctions of singular Sturm-Liouville problems; Chebyshev, Legendre, and Laguerre representations; convergence of eigenfunction expansions; discontinuities and Gibbs phenomenon; aliasing errors and control; efficient implementation of spectral methods; spectral methods for complicated domains; time differencing and numerical stability. Same as: CME 322

ME 410A. Introductory Foresight and Technological Innovation. 3 Units.
Learn to develop long-range, technology-based innovations (5+ years based on industry). This course offers an intensive, hands-on approach using multiple engineering foresight strategies and tools. Model disruptive opportunities and create far-to-near development plans. Three quarter sequence.

ME 410B. Advanced Foresight and Technological Innovation. 1 Unit.
Continuation of ME 410A. Students will continue developing their invention, integrate additional engineering foresight, and develop an intrinsic innovation mindset. Ongoing discussion of industry examples and contemporary events demonstrate foresight principals and engineering leadership in action.

ME 410C. Advanced Foresight and Technological Innovation. 1 Unit.
Continuation of ME 410B. Students will continue developing their invention, integrate additional engineering foresight, and develop an intrinsic innovation mindset. Ongoing discussion of industry examples and contemporary events demonstrate foresight principals and engineering leadership in action.

ME 412. Engineering Functional Analysis and Finite Elements. 3 Units.
Same as: CME 356

ME 413. Quantum Confinement Structures: Physics and Fabrication. 3 Units.
Quantum mechanics principles and the thermodynamics of confinement structures. Focus is on potential applications such as solar cells and catalysis. Student presentations. Lab demonstrations. Prerequisite: background in quantum mechanics and statistical thermodynamics.

ME 414. Solid State Physics for Mechanical Engineering Experiments. 3 Units.
Introductory overview of principles of statistical mechanics, quantum mechanics and solid-state physics. Provides graduate Mechanical Engineering students with the understanding needed to work on devices or technologies which rely on solid-state physics. (Alternate years, not offered summer 2012).

ME 420. Applied Electrochemistry at Micro- and Nanoscale. 3 Units.
Applied electrochemistry with a focus on energy conversion and storage. Basic concepts of thermodynamics, electrochemistry, and first principal calculations are presented, of which today’s fundamentals of electrochemical energy conversion/storage are built. Conventional as well as advanced Li battery concepts/systems and their applications will be a main subject area. intercalation and conversion cathode and anode material families will be introduced and electrochemical function/challenges for energy storage of these materials will be highlighted. Conventional electrolyte materials such as carbonate based liquid electrolyte system and advanced solid-state material will be a topic in class.

ME 421. European Entrepreneurship and Innovation Thought Leaders Seminar. 1 Unit.
Lessons from real-world experiences and challenges in European startups, corporations, universities, non-profit research institutes and venture finance organizations. Speakers include entrepreneurs, leaders from global technology companies, university researchers, venture capitalists, legal experts, senior policy makers and other guests. The course is designed to encompass Ireland to Russia, and Scandinavia to the Mediterranean region. Enrollment open to undergraduates and graduates in any school or department at Stanford.

ME 429. COMMERCIAL MEMS DEVICE DESIGN. 3 Units.
This course will provide insight into designing MEMS based devices for use in commercial/consumer and automotive sensor applications. Topics to be covered in this MEMS sensor design course will include electromechanical modeling/simulation, compensation for cross-wafer and wafer-to-wafer fabrication variations in a high volume semiconductor manufacturing facility, design for extreme environments (drop shock, temperature, etc.), and some discussion of the unique challenges with respect to consumer and automotive sensor markets. Student teams will develop a MEMS sensor/transducer design (capacitive 3-axis accelerometer), electro-mechanical system model (Matlab based), fabrication process flow with manufacturing analysis (Excel based) in response to a provided design specification sheet.
ME 440. Electronic States and Transitions In Quantum Confined Structures. 3 Units.
Summary of selected quantum mechanical concepts with focus on phenomena related to charge separation and transfer. The physics and thermodynamics of excitons described and related to experimental observations. The energy state of electrons as function of confinement size and strength. Presentations include on electron tunneling, measuring the density of electronic states, dielectric behavior of materials, Bose Einstein condensation of quasi particles, and excitons in quantum wells and dots.

ME 450. Advances in Biotechnology. 3 Units.
Guest academic and industrial speakers. Latest developments in fields such as bioenergy, green process technology, production of industrial chemicals from renewable resources, protein pharmaceutical production, industrial enzyme production, stem cell applications, medical diagnostics, and medical imaging. Biotechnology ethics, business and patenting issues, and entrepreneurship in biotechnology.

ME 451A. Advanced Fluid Mechanics Multiphase Flows. 3 Units.
Single particle and multi-particle fluid flow phenomena, mass, momentum and heat transfer, characteristic time and length scales, non-dimensional groups; collection of dispersed-phase elements: instantaneous and averaged descriptions for multiphase flow, Eulerian-Eulerian and Lagrangian-Eulerian statistical representations, mixture theories; models for drag, heat and mass transfer; dilute to dense two-phase flow, granular flows; computer simulation approaches for multiphase flows, emerging research topics. Prerequisites: graduate level fluid mechanics and engineering mathematics, and undergraduate engineering mechanics and thermodynamics.

ME 451B. Advanced Fluid Mechanics Flow Instability. 3 Units.
Waves in fluids: surface waves, internal waves, inertial and acoustic waves, dispersion and group velocity, wave trains, transport due to waves, propagation in slowly varying medium, wave steepening, solitons and solitary waves, shock waves. Instability of fluid motion: dynamical systems, bifurcations, Kelvin-Helmholtz instability, Rayleigh-Benard convection, energy method, global stability, linear stability of parallel flows, necessary and sufficient conditions for stability, viscosity as a destabilizing factor, convective and absolute instability. Focus is on flow instabilities. Prerequisites: graduate courses in compressible and viscous flow.

ME 451C. Advanced Fluid Mechanics - Compressible Turbulence. 3 Units.

ME 451D. Microhydrodynamics. 3 Units.
Transport phenomena on small-length scales appropriate to applications in microfluidics, complex fluids, and biology. The basic equations of mass, momentum, and energy, derived for incompressible fluids and simplified to the slow-flow limit. Topics: solution techniques utilizing expansions of harmonic and Green’s functions; singularity solutions; flows involving rigid particles and fluid droplets; applications to suspensions; lubrication theory for flows in confined geometries; slender body theory; and capillarity and wetting. Prerequisites: 120A,B, 300, or equivalents.
Same as: CHEMENG 310

ME 455. Complex Fluids and Non-Newtonian Flows. 3 Units.
Definition of a complex liquid and micro rheology. Division of complex fluids into suspensions, solutions, and melts. Suspensions as colloidal and non-colloidal. Extra stress and relation to the stresslet. Suspension rheology including Brownian and non-Brownian fibers. Microhydrodynamics and the Fokker-Planck equation. Linear viscoelasticity and the weak flow limit. Polymer solutions including single mode (dumbbell) and multimode models. Nonlinear viscoelasticity. Intermolecular effects in nondilute solutions and melts and the concept of reptation. Prerequisites: low Reynolds number hydrodynamics or consent of instructor.
Same as: CHEMENG 462

ME 457. Fluid Flow in Microdevices. 3 Units.
Physico-chemical hydrodynamics. Creeping flow, electric double layers, and electrochemical transport such as Nernst-Planck equation; hydrodynamics of solutions of charged and uncharged particles. Device applications include microsystems that perform capillary electrophoresis, drug dispersion, and hybridization assays. Emphasis is on bioanalytical applications where electrophoresis, electro-osmosis, and diffusion are important. Prerequisite: consent of instructor.

ME 458. Advanced Topics in Electrokinetics. 3-5 Units.
Electrokinetic theory and electrokinetic separation assays. Electroneutrality approximation and weak electrolyte electrophoresis theory. Capillary zone electrophoresis, field amplified sample stacking, isoelectric focusing, and isochotophoresis. Introduction to general electrohydrodynamics (EHD) theory including the leaky dielectric concept, the Ohmic model formulation, and electrokinetic flow instabilities. Prerequisite: ME 457.

ME 461. Advanced Topics in Turbulence. 3 Units.
Turbulence phenomenology; statistical description and the equations governing the mean flow; fluctuations and their energetics; turbulence closure problem, two-equation turbulence models, and second moment closures; non-local effect of pressure; rapid distortion analysis and effect of shear and compression on turbulence; effect of body forces on turbulent flows; buoyancy-generated turbulence; suppression of turbulence by stratification; turbulent flows of variable density; effect of rotation on homogeneous turbulence; turbulent flows with strong vortices. Prerequisites: 351B and 361A, or consent of instructor.

ME 463. Advanced Topics in Plasma Science and Engineering. 3 Units.
Research areas such as plasma diagnostics, plasma transport, waves and instabilities, and engineering applications.

ME 469. Computational Methods in Fluid Mechanics. 3 Units.
The last two decades have seen the widespread use of Computational Fluid Dynamics (CFD) for analysis and design of thermal-fluids systems in a wide variety of engineering fields. Numerical methods used in CFD have reached a high degree of sophistication and accuracy. The objective of this course is to introduce classical approaches and algorithms used for the numerical simulations of incompressible flows. In addition, some of the more recent developments are described, in particular as they pertain to unstructured meshes and parallel computers. An in-depth analysis of the procedures required to certify numerical codes and results will conclude the course.

ME 469B. Computational Methods in Fluid Mechanics. 3 Units.
ME 47. Press Play: Interactive Device Design. 4-5 Units.
This course provides an introduction to the human-centered and technical workings behind interactive devices ranging from cell phones and video controllers to household appliances and smart cars. This is a hands-on, lab-based course; there will be no midterm or final. Course topics include electronics prototyping, interface prototyping, sensors and actuators, microcontroller development, physical prototyping and user testing. For the final project, students will build a working MP3 player prototype of their own design, using embedded microcontrollers, digital audio decoders, component sensors and other electronic hardware. Prior experience in programming, such as CS106A (or equivalent) or electronics, such as ENG40A (or equivalent) preferred. Students must attend the first class.

ME 470. Uncertainty Quantification. 3 Units.
Uncertainty is an unavoidable component of engineering practice and decision making. Representing a lack of knowledge, uncertainty stymies our attempts to draw scientific conclusions, and to confidently design engineering solutions. Failing to account for uncertainty can lead to false discoveries, while inaccurate assessment of uncertainties can lead to overbuilt engineering designs. Overcoming these issues requires identifying, quantifying, and managing uncertainties through a combination of technical skills and an appropriate mindset. This class will introduce modern techniques for quantifying and propagating uncertainty and current challenges. Emphasis will be on applying techniques in genuine applications, through assignments, case studies, and student-defined projects. Prerequisite: Basic probability and statistics at the level of CME 106 or equivalent.

Same as: CEE 362A

ME 471. Turbulent Combustion. 3 Units.
Basis of turbulent combustion models. Assumption of scale separation between turbulence and combustion, resulting in Reynolds number independence of combustion models. Level-set approach for premixed combustion. Different regimes of premixed turbulent combustion with either kinematic or diffusive flow/chemistry interaction leading to different scaling laws and unified expression for turbulent velocity in both regimes. Models for non-premixed turbulent combustion based on mixture fraction concept. Analytical predictions for flame length of turbulent jets and NOx formation. Partially premixed combustion. Analytical scaling for lift-off heights of lifted diffusion.

ME 472. Computational Modeling of Radiative Transfer. 3 Units.
Overview of physical modeling and computational methods for radiation transfer in participating media. Review of surface transfer. Radiation hydrodynamics and the radiative transfer equation. Constitutive relations for transport coefficients of participating media. Formal solution and one-dimensional transfer. Moment methods: diffusion and spherical harmonics. The discrete ordinates method: spatial and angular discretization, false scattering and ray effects, the finite volume method, parallelization. Monte Carlo ray tracing; ray tracing, Monte Carlo simulations, surface transfer, transfer in participating media, variance reduction techniques, parallelization. Additional topics covered time permitting: spectral modeling, collimated sources, transient radiative transfer, reverse ray-tracing. Prerequisites: ME 300C or equivalent; STATS 116 or equivalent; undergraduate heat transfer, ME 352A strongly recommended but not required.

ME 485. Modeling and Simulation of Human Movement. 3 Units.
Direct experience with the computational tools used to create simulations of human movement. Lecture/labs on animation of movement; kinematic models of joints; forward dynamic simulation; computational models of muscles, tendons, and ligaments; creation of models from medical images; control of dynamic simulations; collision detection and contact models. Prerequisite: 281, 331A,B, or equivalent. Same as: BIOE 485

ME 491. Ph.D. Teaching Experience. 3 Units.
Required of Ph.D. students. May be repeated for credit.

ME 492. Mechanical Engineering Teaching Assistance Training. 1 Unit.

ME 495A. ME Seminar Series: Product Design. 1 Unit.
Seminars will feature accomplished product designers and product design researchers. Guest speakers will come from the U.S. and internationally, and will present on topics of current interest to the Product Design Community.

ME 495B. ME Seminar Series: At the Interface between Mechanical Engineering and Biology. 1 Unit.
Seminars will feature early career mechanical engineers working on leading edge problems in biomechanical engineering. Topics include mechanobiology, cell mechanics, transport phenomena in biological systems, bio-inspired design, design and analysis of biodevices or bioinstrumentation, biomaterials, and modeling of physiological systems. Guest speakers will come from top universities within the U.S. and internationally, and will discuss both their past research and plans for building a research program in the future.

ME 500. Thesis. 1-15 Unit.
Same as: Ph.D.

ME 571. Surgical Robotics Seminar. 1 Unit.
Surgical robots developed and implemented clinically on varying scales. Seminar goal is to expose students from engineering, medicine, and business to guest lecturers from academia and industry. Engineering and clinical aspects connected to design and use of surgical robots, varying in degree of complexity and procedural role. May be repeated for credit. Same as: CS 571

ME 70. Introductory Fluids Engineering. 3 Units.

ME 80. Mechanics of Materials. 3 Units.
Mechanics of materials and deformation of structural members. Topics include stress and deformation analysis under axial loading, torsion and bending, column buckling and pressure vessels. Introduction to stress transformation and multiaxial loading. Prerequisite: ENGR 14.

ME 801. TGR Project. 0 Units.

ME 802. TGR Dissertation. 0 Units.