COMPARATIVE MEDICINE (COMPMED)

COMPMED 107. Comparative Brain Evolution. 4 Units.
Functional organization and evolution of the vertebrate nervous system. Topics include paleoneurology, cladistic analysis, allometry, mosaic versus concerted evolution, and evolution of brain region structure, connectivity, and neurons. Comparisons between structure and function of vertebrate forebrains including hippocampi. Evolution of the primate visual and sensorimotor central nervous system as related to vocalization, socialization, and intelligence.
Same as: COMPMED 207

COMPMED 109. Veterinary Clinical Shadowing Experience. 1-2 Unit.
Restricted to pre-veterinary students. Priority given to Seniors. The objective of this course is to provide students with practical experience in clinical laboratory animal veterinary medicine by shadowing veterinary staff at Stanford. Experience is gained in areas of laboratory animal veterinary care such as housing systems, husbandry, disease surveillance, enrichment, physical exams and clinical management. Enrolled students will work with multiple species and fully intend to apply to veterinary school. Limited Enrollment.

COMPMED 110. Pre-Vet Advisory. 1 Unit.
For students interested in a career in veterinary medicine. How to meet the academic and practical experience prerequisites for admission to veterinary school. Networking with other pre-vet students. Periodic group meetings with guest speakers presenting career options in veterinary medicine. Prerequisite: consent of instructor.

COMPMED 114. Introduction to Veterinary/Medical Terminology. 2 Units.
The Introduction to Veterinary Medical Terminology course will introduce students to medical terminology used in the veterinary profession and in biomedical research. This course is designed with the pre-veterinary student in mind, although pre-medical students and students in other fields are welcome. Upon successful completion of the course, students will be able to review, comprehend, and communicate basic medical reports and clinical assessments. Students can expect to complete 2-4 hours of reading per week, to meet 2 hours per week for lecture and to review cases.

COMPMED 111SC. Life in the Zoo: Behavior, Welfare and Enrichment. 2 Units.
What makes for a good life in a zoo? For that matter, what makes a good zoo? The psychological and physical wellbeing of the animals? The contribution to research, conservation, and education? The guest experience? Students will learn first-hand how animal welfare science provides an evidence-based approach to optimize and balance each of these demands so that “good welfare is good business.” Through a unique experience at San Francisco Zoo students will learn how to apply principles of animal behavior to design environmental enrichments which benefit both the animals and the complex mission of a zoo. Students will be guided through the process of assessing an exhibit from the point of view of the animal’s behavior and wellbeing, educational opportunities, and guest experience; developing an enrichment plan; designing and building enrichments for the animals; interacting with the public as docents; and assessing the overall effectiveness of a new enrichment; before finally presenting their work at a “mini-conference.” The course will be taught with an emphasis on self-guided learning, student-led class time, hands-on experience, and service-learning. Most days will begin with students presenting what they have learned the previous day to the class, followed by student-led discussion, preparation time for the day’s activities, and then time out in the zoo. The course will be taught by Dr. Garner (whose introductory seminar in Animal Behavior is strongly recommended, though not required) and Dr. Watters (Vice President of Animal Wellness and Animal Behavior, San Francisco Zoological Society). [This is a SOPHOMORE COLLEGE course. Visit soco.stanford.edu for full details.]

COMPMED 123. Immunology of Infectious Disease. 2 Units.
Course utilizes active learning techniques to explore essential elements of the mammalian host response to infection. Focusing on overriding principles rather than rote learning, course delivers pragmatic understanding of this response. Topics include pathogenesis of clinically relevant pathogens, vital immune system cells and tissues, and how innate and adaptive immunity responses are coordinated to control infection. Integrated into this active learning experience are human and veterinary medicine clinical cases that provide an exciting way for participants to re-enforce understanding of these basic concepts of host defense and challenge their problem-solving abilities. UG prerequisites: Cell Biology or consent of instructor.

COMPMED 198. Undergraduate Directed Reading in Comparative Medicine. 1-3 Unit.
May be taken as a prelude to research and may also involve participation in a lab or research group seminar and/or library research.

COMPMED 199. Undergraduate Research. 1-3 Unit.
Investigations sponsored by individual faculty members. Prerequisite: consent of instructor.

COMPMED 200. One Health Journal Club. 2 Units.
Participants report on and review scientific articles published in peer reviewed journals. Focus is on manuscripts which report basic and mechanistic discoveries, animal modeling and translational research. The objective is to introduce MLAS students to critical scientific review of hypothesis-based research and experimental design, data analysis and interpretation. Enrollment limited to undergraduate and graduate students currently matriculated or planning to enroll in the MS in Laboratory Animal Science degree program.

COMPMED 201. Neuro-Cellular Core. 2 Units.
Focuses on fundamental aspects of cellular neurophysiology. Topics include exploration of electrophysiological properties of neurons, synaptic structure and function and synaptic plasticity. The course consists of didactic lectures and student-led discussions of classical papers. Incorporates simulation program Neuron. Enrollment restricted to students enrolled in Neurosciences Graduate Program.
Same as: NEPR 201
COMPMED 202. Research Biomethodology for Laboratory Animal Science. 2 Units.

Emphasis is on providing introductory training and practical, hands-on research animal biomethodology. Topics include basic care and principles guiding the use of research animals, animal health and welfare, enrichment, basic mouse handling, rodent breeding, and the principals of rodent aseptic surgery and anesthesia. The objective of this course is to teach basic skills in animal handling, animal care and biomethodological research techniques. Content delivered online and in-person.

COMPMED 205. Animal Use in Biomedical Research. 3 Units.

How and why animals are used in biomedical science. Addresses human and animal disease entities and how animal research has contributed to the treatment and cure of disease. Significant portions of this course are devoted to documenting the humane care and treatment of laboratory animals in research, including, but not limited to such topics as law and ethics, animal behavior, animal modeling, and the animal activist movement. Course topics will also include: What advances have been made as a result of the use of animals in research? Who conducts animal research? Predominant animal species used in biomedical research, facts and myths; the regulation of biomedical research; housing and care of laboratory animals; why new drugs must be tested; animal use in stem cell research, cancer research and genetically engineered mice; career choices in biomedical research.

COMPMED 207. Comparative Brain Evolution. 4 Units.

Functional organization and evolution of the vertebrate nervous system. Topics include paleoneurology, cladistic analysis, allometry, mosaic versus concerted evolution, and evolution of brain region structure, connectivity, and neurons. Comparisons between structure and function of vertebrate forebrains including hippocampi. Evolution of the primate visual and sensorimotor central nervous system as related to vocalization, socialization, and intelligence.

Same as: COMPMED 107

COMPMED 209. Laboratory Animal Medicine Seminar. 1 Unit.

Focuses on husbandry, care and diseases of major laboratory animal species (rodents, fish and amphibians, swine, sheep, rabbits, monkeys); regulatory and compliance, applied principals of animal modeling, and factors that influence animal research, animal behavior and research reproducibility. The objective of this course is to provide students with an overview of the history of laboratory animal science, current industry standards and practices, and the fundamentals of laboratory animal diseases. Department consent required for enrollment. May be repeated for credit.

COMPMED 210. Introduction to Mouse Histopathology. 3 Units.

Focus is on anatomy and histology (microscopic anatomy) of the entire mouse, proper instrument handling and dissection technique, proper tissue fixation, trimming and orientation in cassettes, identification of normal organ histology on H & E-stained slides using a light microscope, use of special stains, and digital image acquisition. Basic pathological processes (inflammation, necrosis, apoptosis, hyperplasia, cancer) and how these manifest in different organs comprises the pathology aspect of this course. Participants present the pathology of their lab's mouse models. Preference to graduate students working with mouse models. Dissection labs. Comfort with mouse handling and previous participation in VSC mouse handling and euthanasia workshops recommended.

COMPMED 210A. Form and Funkiness of Lab Animals I: Anatomy and Histology. 3 Units.

Have you ever wondered what dermatitis looks like on a histology slide? Have you ever lost sleep thinking about what an infarct really is? Well, it's your lucky quarter! This course focuses on the microscopic assessment of tissue pathology, with a focus on the laboratory mouse. Topics covered include: cell injury and cell death, inflammation, healing, and neoplasia. Common diseases of the laboratory house will also be covered. Prerequisites: COMPMED210A (Form and Funkiness of Laboratory Animals I: Anatomy and Histology).

COMPMED 210B. Form and Funkiness of Lab Animals II: Introduction to Pathological Principles. 3 Units.

Have you ever ever wondered what dermatitis looks like on a histology slide? Have you ever lost sleep thinking about what an infarct really is? Well, it's your lucky quarter! This course focuses on the microscopic assessment of tissue pathology, with a focus on the laboratory mouse. Topics covered include: cell injury and cell death, inflammation, healing, and neoplasia. Common diseases of the laboratory house will also be covered. Prerequisites: COMPMED210A (Form and Funkiness of Laboratory Animals I: Anatomy and Histology).

COMPMED 211. Biostatistics for the Life Sciences. 2 Units.

Emphasis is on real-world experimental design and analysis in the life sciences, with particular focus on modern techniques that maximize power and minimize sample size, and avoiding common errors contributing to false discovery and the reproducibility crisis. This is a flipped-classroom. Class time is devoted to discussion of assigned reading (primarily Grafen & Hails 2002 "Modern statistics for the life sciences"), critique of papers, working through example data sets, and developing analyses for the students' own research data. The objective is to provide MLS students with a fundamental understanding of basic statistics, particularly as applied to the design and planning of animal-based research projects.

COMPMED 212. Laboratory Mouse in Biomedical Research. 3 Units.

Focus is on the laboratory mouse, a widely used and important research model. Topics include the ethics of animal use in research; the natural history, origin and husbandry of the mouse; characteristics of key mouse strains; its anatomy and physiology; common diseases and their effects on research; coat color genetics relative to human diseases; immunodeficient mouse models; and genetic engineering of mice. The laboratory includes necropsy, handling, introduction to anesthesia and surgery, identification methods, and common research techniques using live and dead mice. Class enrollment includes a laboratory section.

COMPMED 215. Synaptic Properties and Neuronal Circuits. 2-3 Units.

Focus is on synapses and circuits in the central nervous system. Objective is to demonstrate how the specific properties of different synapses play a role in the function of neuronal circuits. The main types of synapses are covered, including both ionotropic and metabotropic-receptor-dependent synapses and their related circuits in the CNS. Lectures and student presentations. If taken for 3 units qualifies as a Core Course satisfying requirements in Cellular, Molecular & Developmental Neuroscience in the Neurosciences Graduate Program. Students enrolling for 3 units write an NIH-style proposal on a selected synapse, proposing a study of its properties and related function and presenting the proposal to the class for critique and discussion.

COMPMED 23N. Microbes that Made Plagues: Biological Causes and Social Effects. 3 Units.

Massive scale infections or plagues have often occurred, affecting millions for years or quickly killing thousands. In this seminar, we will use both biological and social lenses to examine infectious agents and the plagues they caused. To provide helpful framework for this exploration, we will begin with a very brief overview of the principles of microbiology and immunology. This will be followed by specific looks at the biological causes and social responses to Black Death, cholera, tuberculosis, the 1918 influenza pandemic, polio, and the ongoing HIV pandemic. We will conclude our seminar with similar looks at some of the infectious agents most likely to cause new pandemics.

COMPMED 260. Masters Laboratory Animal Science Practicum/ Laboratory Research. 1-15 Unit.

Research laboratory and clinical service (pathology, diagnostic laboratory, surgery, husbandry, anesthesiology, aquatics, facility business and management, etc.), quarterly rotations for students enrolled in the Master's of Laboratory Animal Science program. The objective of this course is to provide students with hands-on experience in research laboratories using animal models and to provide experience working in the daily operations of a large, veterinary service center. Fulfills the practicum and research requirements of MLS students.
COMPME 290. Laboratory Animal Science Professional Development and Career Exploration. 1 Unit.
Focus is on career development for graduate students and trainees enrolled in a trainee program in the Department of Comparative Medicine. Seminar topics include career pathways in laboratory animal science, resume preparation, manuscript preparation and authorship, life in academics, life in industry and biopharma, regulatory agencies, veterinary and medical school. Speakers include faculty, speakers from industry and pharmaceutical companies, veterinary school and medical school graduates, regulatory and compliance professionals, research scientists, and animal research program/laboratory managers. Students may choose to shadow veterinary clinical faculty or rotate through basic science laboratory, by special arrangement. The objective is to introduce students to the multiple career pathways available to individuals with advanced training in laboratory animal science. May be taken up to six quarters.

COMPME 299. Directed Reading in Comparative Medicine. 1-18 Unit.
Prerequisite: consent of instructor. (Staff).

COMPME 370. Medical Scholars Research. 4-18 Units.
Provides an opportunity for student and faculty interaction, as well as academic credit and financial support, to medical students who undertake original research. Enrollment is limited to students with approved projects.

COMPME 399. Graduate Research. 1-18 Unit.
Investigations sponsored by individual faculty members. Opportunities are available in comparative medicine and pathology, immunohistochemistry, electron microscopy, molecular genetics, quantitative morphometry, neuroanatomy and neuropathology of the hippocampus, pathogenesis of intestinal infections, immunopathology, biology of laboratory rodents, anesthesiology of laboratory animals, gene therapy of animal models of neurodegenerative diseases, and development and characterization of transgenic animal models. Prerequisite: consent of instructor.

COMPME 801. TGR Project. 0 Units.

COMPME 80N. Animal behavior: sex, death, and sometimes food!. 3 Units.
Preference to freshman. Behavior is what makes animals special (thirsty plants don’t walk to water), but why do animals behave the way they do? What does their behavior tell us about their inner lives, and about ourselves? What do lipstick and cuckoos and fireflies have in common? Why would nobody want to be a penguin? What do mice say to each other in their pee-mail? Learning how to think about questions like these gives us a unique perspective on the natural world. Format: Discussion and criticism of video examples, documentaries, and research papers. Topics: History and approaches to animal behavior; development of behavior; from genetics to learning; mechanisms of behavior; from neurons to motivation; function of behavior, from honest signals to selfish genes; the phylogeny of behavior, from domestication to speciation; and modern applications of behavior, from abnormal behavior, to conservation, to animal welfare, and animal consciousness.

COMPME 81Q. Aardvarks to Zebras: The A to Z of Animal Anatomy. 3 Units.
Preference to sophomores. Ever wonder what cats and narwhals have in common? Maybe you haven’t, but despite their seemingly different lifestyles and habitats (i.e. sleeping on couches versus swimming in oceans), they are both mammals! In this seminar, students will gain an appreciation for basic mammalian anatomic and physiologic principles that span across multiple species while emphasizing key differences that render each species unique. Through student projects, we will explore evolutionary adaptations that have driven the success of a variety of species within the context of their natural environments. In addition to a weekly lecture, weekly laboratory sessions will reinforce anatomic principles through a combination of rodent cadaver dissection, organ and bone specimens, and use of virtual reality demonstrations. Furthermore, students will have the opportunity to visit Año Nuevo State Park to experience a guided viewing of northern elephant seals within their natural habitat. Students with a passion for science will gain a fundamental understanding of anatomy that is applicable to future careers in medicine, biomedical research, veterinary medicine, and ecology/conservation.

COMPME 83. Horse Medicine. 2 Units.
The course will explore most common equine diseases, ranging from colic to lameness are reviewed using problem-oriented approach. Topics include: equine infectious diseases, care of the newborn foal, medical emergencies, and neurological disorders. The course includes a 2 hour lab on the physical and neurological examination of the horse at the Stanford Red Barn. Students will also have the opportunity to ride polo ponies and learn the basics of polo during a trip to the Stanford Polo Team Fields.

COMPME 84Q. Globally Emerging Zoonotic Diseases. 3 Units.
Preference to sophomores. Infectious diseases impacting veterinary and human health around the world today. Mechanisms of disease, epidemiology, and underlying diagnostic, treatment and control principles associated with these pathogens.

COMPME 85N. Animal Use in Biomedical Research. 3 Units.
Preference to women. How and why animals are used in biomedical science. Addresses human and animal disease entities and how animal research has contributed to the treatment and cure of disease. Significant portions of this course are devoted to documenting the humane care and treatment of laboratory animals in research, including, but not limited to such topics as laws and ethics, animal behavior, animal modeling, and the animal activist movement. Course topics will also include: What advances have been made as a result of the use of animals in research? Who conducts animal research? Predominant animal species used in biomedical research, facts and myths; the regulation of biomedical research; housing and care of laboratory animals; why new drugs must be tested; animal use in stem cell research, cancer research and genetically engineered mice; career choices in biomedical research.

COMPME 87Q. Laboratory Mouse in Biomedical Research. 3 Units.
Preference to sophomores. This course focuses on the laboratory mouse, a widely used and important biomedical research model. We will explore the natural history and origin of the laboratory mouse; the ethics and regulations on the use of mice in research; the characteristics and nomenclature of commonly used mouse strains; the anatomy, physiology, and husbandry of laboratory mice; common mouse diseases and their effects on research; mouse coat color genetics and its relevance to human diseases; immunodeficient mouse models and their uses in biomedical research; and the technology for genetically engineering laboratory mice (e.g., transgenic mice). The laboratory component of the course uses live or dead mice to provide hands-on experience with mouse handling, necropsy, anesthesia and surgery; identification methods; and techniques commonly used in biomedical research. Enrollment limited to 14 students.
COMPMED 89Q. Ouch it Hurts! The Comparative Neurobiology of Pain. 3 Units.
Preference to sophomores. Focus is on understanding the basic neurobiology of pain pathways. Topics include the physiology, pharmacology, and clinical aspects of effective pain management. In both humans and animals pain is part of the protective mechanisms that prevent further injury to the body. However, if the pain process continues unchecked, it can become extremely detrimental.