CIVIL & ENVIRON
ENGINEERING (CEE)

CEE 1. Introduction to Environmental Systems Engineering. 1 Unit.
Field trips visiting environmental systems installations in Northern California, including coastal, freshwater, and urban infrastructure. Requirements: Several campus meetings, and field trips. Enrollment limited; priority given to undergraduates who have declared Environmental Systems Engineering major, and undeclared Fr/Sophs.

CEE 100. Managing Sustainable Building Projects. 4 Units.
Managing the life cycle of buildings from the owner, designer, and contractor perspectives emphasizing sustainability goals; methods to define, communicate, coordinate, and manage multidisciplinary project objectives including scope, quality, life cycle cost and value, schedule, safety, energy, and social concerns; roles, responsibilities, and risks for project participants; virtual design and construction methods for product, organization, and process modeling; lifecycle assessment methods; individual writing assignment related to a real world project.

CEE 101A. Mechanics of Materials. 4 Units.
Introduction to beam and column theory. Normal stress and strain in beams under various loading conditions; shear stress and shear flow; deflections of determinate and indeterminate beams; analysis of column buckling; structural loads in design; strength and serviceability criteria. Lab experiments. Prerequisites: ENGR 14.

CEE 101B. Mechanics of Fluids. 4 Units.
Physical properties of fluids and their effect on flow behavior; equations of motion for incompressible ideal flow, including the special case of hydrostatics; continuity, energy, and momentum principles; control volume analysis; laminar and turbulent flows; internal and external flows in specific engineering applications including pipes and open channels; elements of boundary-layer theory. The Tuesday lectures, which are preparation for the labs, will start at 12:30pm. Lab experiments will illustrate conservation principles and flows of real fluids, analysis of errors and modeling of simple fluid systems. Students seeking to take this course without the laboratory will need to enroll in CEE 162A but must get permission first from the instructor. Prerequisites: E14, Physics 41, Math 51, or CME 100.

CEE 101C. Geotechnical Engineering. 3-4 Units.
Introduction to the principles of soil mechanics. Soil classification, shear strength and stress-strain behavior of soils, consolidation theory, analysis and design of earth retaining structures, introduction to shallow and deep foundation design, slope stability. Lab projects. Prerequisite: ENGR 14. Recommended: 101A.

CEE 101D. Computations in Civil and Environmental Engineering. 3 Units.
Computational and visualization methods in the design and analysis of civil and environmental engineering systems. Focus is on applications of MATLAB. How to develop a more lucid and better organized programming style.
Same as: CEE 201D

CEE 101S. Science & Engineering Problem-Solving with MatLab. . 3 Units.
Introduction to the application of MATLAB as a powerful tool to solve a variety of science and engineering problems. Exposure to computational and visualization tools available through MATLAB to analyze, solve, and visualize some common problems of interest in science and engineering. Prequisite: Calculus. Note: students enrolling in CEE 201S must seek the consent of instructor.
Same as: CEE 201S

CEE 102. Legal and Ethical Principles in Design, Construction, and Project Delivery. 3 Units.
Introduction to the key legal principles affecting design, construction and the delivery of infrastructure projects. The course begins with an introduction to the structure of law, including principles of contract, negligence, professional responsibility, intellectual property, land use and environmental law, then draws on these concepts to examine current and developing means of project delivery. Limited class size. Enrollment preference given to undergraduates majoring in CE and EnVE.

CEE 102W. Technical and Professional Communication. 3 Units.
Effective communication skills will help you advance quickly. Learn the best technical and professional techniques in writing and speaking. Group workshops and individual conferences with instructors. Designed for undergraduates going into industry. Allowed to fulfill WIM for Atmosphere/Energy and Environmental Systems Engineering majors only. Same as: ENGR 102W

CEE 107A. Understanding Energy. 3-5 Units.
Energy is the number one contributor to climate change and has significant consequences for our society, political system, economy, and environment. Energy is also a fundamental driver of human development and opportunity. In taking this course, students will not only understand the fundamentals of each energy resource -- including significance and potential, conversion processes and technologies, drivers and barriers, policy and regulation, and social, economic, and environmental impacts -- students will also be able to put this in the context of the broader energy system. Both depletable and renewable energy resources are covered, including oil, natural gas, coal, nuclear, biomass and biofuel, hydroelectric, wind, solar thermal and photovoltaics (PV), geothermal, and ocean energy, with cross-cutting topics including electricity, storage, climate change and greenhouse gas emissions (GHG), sustainability, green buildings, energy efficiency, transportation, and the developing world. The course is 4 units, which includes lecture and in-class discussion, readings and videos, assignments, and two off-site field trips. Field trip offerings differ each fall (see syllabus for updated list), but may include Diablo Canyon nuclear power plant, Shasta dam, Tesla Gigafactory, NextEra wind farm, San Ardo oil field, Geyser’s geothermal power plants, etc. Students choose two field trips from approximately 8 that are offered. Enroll for 5 units to also attend the Workshop, an interactive discussion section on cross-cutting topics that meets once per week for 80 minutes (timing TBD). The 3-unit option requires instructor approval - please contact Diana Ginnebaugh. Open to all: pre-majors and majors, with any background! The course was formerly called Energy Resources. Website: http://web.stanford.edu/class/cee207a/ nFor a course that covers all of this but goes less in-depth into the technical aspects of each energy resource, check out CEE 107S/207S Understanding Energy: Essentials, offered spring and summer (cannot take both for credit). Prerequisites: Algebra. May not be taken for credit by students who have completed CEE 107S/207S or CEE 107E. Same as: CEE 207A, EARTHSYS 103
CEE 107R. E^3: Extreme Energy Efficiency. 3 Units.
Be part of a unique and intense six day course about extreme energy efficiency taking place during Spring Break at Rocky Mountain Institute’s Innovation Center in Basalt, Colorado! Students will also meet several times during the quarter prior to the spring break portion of the course. E^3 will focus on efficiency techniques’ design, performance, choice, evolution, integration, barrier-busting, profitable business-led implementation, and implications for energy supply, competitive success, environment, development, security, etc. Examples will span very diverse sectors, applications, issues, and disciplines, with each day covering a different energy theme: buildings, transportation, industry, and implementation and implications, including renewable energy synergy and integration. Solid technical grounding and acquaintance with basic economics and business concepts will both be helpful. Rocky Mountain Institute (RMI) will design a series of lectures, exercises, and interactive activities synthesizing integrative design principles. Students will be introduced to Factor 10 Engineering, the approach for optimizing the whole system for multiple benefits. Students will work closely and interactively with RMI staff including Amory Lovins, cofounder and Chief Scientist of Rocky Mountain Institute (RMI). Exercises will illuminate challenges RMI has faced and solutions it has created in real-world design. Students will explore clean-sheet solutions that meet end-use demands and optimize whole-system resource efficiency, often with expanding rather than diminishing returns to investments, i.e. making big savings cheaper than small ones. Students will meet as a class once during winter quarter to discuss preparation and spring break logistics. Students must pay for their own travel to and from Basalt, CO (~$400). Lodging and food will be provided during the course. Students must apply - instructor approval required. All backgrounds and disciplines, both undergraduate and graduate, are welcome to apply. Prerequisite - completion of one of the following courses or their equivalent is required: CEE 107A/207A/EarthSys 103, CEE 107S/CEE 207S, CEE 176A, CEE 176B. Contact Diana Ginnebaugh at moongdes@stanford.edu for an application. Course details are available at the website: https://web.stanford.edu/class/cee207r/. Same as: CEE 207R.

CEE 107S. Understanding Energy - Essentials. 3-4 Units.
Energy is the number one contributor to climate change and has significant consequences for our society, political system, economy, and environment. Energy is also a fundamental driver of human development and opportunity. Students will learn the fundamentals of each energy resource – including significance and potential, drivers and barriers, policy and regulation, and social, economic, and environmental impacts - and will be able to put this in the context of the broader energy system. Both depletable and renewable energy resources are covered, including oil, natural gas, coal, nuclear, biomass and biofuel, hydroelectric, wind, solar thermal and photovoltaics (PV), geothermal, and ocean energy, with cross-cutting topics including electricity, storage, climate change and greenhouse gas emissions (GHG), sustainability, green buildings, energy efficiency, transportation, and the developing world. The course is 3 units, which includes lecture, readings and videos, assignments, and one off-site field trips. Field trip offerings differ each quarter (see syllabus for updated list), but for the spring quarter may include Diablo Canyon nuclear power plant, Shasta dam, Tesla Gigafactory, NextrEra wind farm, San Ardo oil field, Geyser geothermal power plants, etc. Students choose one field trip from approximately 8 that are offered. For the summer quarter, one off-campus field trip will be offered and required. Enroll for 4 units to also attend the Workshop, an interactive discussion session on cross-cutting topics that meets once per week for 80 minutes (timing TBD). This is a course for all: pre-majors and majors, with any background - no prior energy knowledge necessary. For a course that covers all of this plus goes more in-depth into the technical aspects of each energy resource, check out CEE 107A/207A/EarthSys 103 Understanding Energy offered in the autumn quarter (cannot take both for credit). This course was formerly called Energy Resources. Website: http://web.stanford.edu/class/cee207a/ nPrerequisites: Algebra. May not be taken for credit by students who have completed CEE 107A/207A/ EarthSys 103. Same as: CEE 207S.

CEE 10A. Introduction to Architecture. 2 Units.
This class introduces students to the discipline of architecture and to the fundamental question: What is an architect and how is architecture distinct from other arts and sciences? To answer this question, the class will focus on concepts important to the practice of architecture including: project conception, drawing, modeling, materials, structure, form, and professionalism. These terms will be investigated through short talks, site visits, historical precedent, in-class exercises, panel discussions and two on-campus case studies. No prior knowledge of architecture is required.

CEE 10B. Presentation Skills. 0 Units.
TBD.

CEE 112A. Industry Applications of Virtual Design & Construction. 2-4 Units.
Building upon the concept of VDC Scorecard, CEE 112A/212A investigates in the management of Virtual Design and Construction (VDC) programs and projects in the building industry. Interacting with experts and professionals in real estate, architecture, engineering, construction and technology providers, students will learn from the industry applications of Building Information Modeling and its relationship with Integrated Project Delivery. Sustainable Design and Construction. Students will conduct case studies to evaluate the maturity of VDC planning, adoption, technology and performance in practice. Students taking 3 or 4 units will be paired up with independent research or case study projects on the industry applications of VDC. No prerequisite. See CEE112B/212B in the Winter Quarter and CEE 112C/212C in the Spring Quarter.
CEE 120B. Building Information Modeling Workshop. 2-4 Units.
This course builds upon the Building Information Model concepts introduced in 120A/220A and illustrates how BIM modeling tools are used to design, analyze, and model building systems including structural, mechanical, electrical, plumbing and fire protection. Course covers the physical principles, design criteria, and design strategies for each system and explores processes and tools for modeling those systems and analyzing their performance. Topics include: building envelopes, access systems, structural systems modeling and analysis, mechanical / HVAC systems, plumbing and fire protection systems, electrical systems, and systems integration/coordination.
Same as: CEE 220B

CEE 120C. Parametric Design and Optimization. 2-4 Units.
This course explores tools and techniques for computational design and parametric modeling as a foundation for design optimization. Class sessions will introduce several parametric design modeling platforms and scripting environments that enable rapid generation of 3D models and enable rapid evaluation of parametrically-driven design alternatives. Topics to be featured include:
1. Principles of parametric design vs. direct modeling
Same as: CEE 220C

CEE 120S. Building Information Modeling Special Study. 2-4 Units.
Special studies of Building Information Modeling strategies and techniques focused on creating, managing, and applying models in the building design and construction process. Processes and tools for creating, organizing, and working with 2D and 3D computer representations of building components to produce models used in design, construction planning, visualization, and analysis.
Same as: CEE 220S

CEE 122A. Computer Integrated Architecture/Engineering/Construction. 2 Units.
Undergraduates serve as apprentices to graduate students in the AEC global project teams in CEE 222A. Apprentices participate in all activities of the AEC team, including the goals, objectives, constraints, tasks, and processes of the interdisciplinary global AEC teamwork in the concept development phase of a comprehensive building project. Prerequisite: consent of instructor.
Same as: A/E/C

CEE 122B. Computer Integrated A/E/C. 2 Units.
Undergraduates serve as apprentices to graduate students in the AEC global project teams in CEE 222B. Project activity focuses on modeling, simulation, life-cycle cost, and cost benefit analysis in the project development phase. Prerequisite: CEE 122A.

CEE 124. Sustainable Development Studio. 1-5 Unit.
(Graduate students register for 224A.) Project-based, Sustainable design, development, use and evolution of buildings; connections of building systems to broader resource systems. Areas include architecture, structure, materials, energy, water, air, landscape, and food. Projects use a cradle-to-cradle approach focusing on technical and biological nutrient cycles and information and knowledge generation and organization. May be repeated for credit.

CEE 124E. Ethics in Urban Systems. 3 Units.
This course will explore a comprehensive understanding of ethical challenges across dimensions of sustainability, resilience, equity, and well-being in urban systems, and the professional responsibilities of engineers in addressing those ethical challenges. We will cover theoretical and philosophical concepts and examine case studies in historical and current context, as well as produce written work, so as to prepare students for ethical systems before they engage in project-based learning. Students will build practical skills in ethical reasoning, including statistics, accounting, needfinding, and communication.
CEE 124S. Sustainable Urban Systems Seminar. 1 Unit.
The Sustainable Urban Systems (SUS) Seminar Series will feature speakers from academia, practice, industry, and government who are on the forefront of research and innovation in sustainable urban systems. The SUS Seminar will require high levels of self-driven learning, time commitment, professionalism, and collaboration. Open to undergraduate and graduate students in any major. For more information, visit http://sus.stanford.edu/courses.
Same as: CEE 224S

CEE 124X. Sustainable Urban Systems Fundamentals. 3-5 Units.
This course is designed to provide students with fundamental mindsets and toolsets that they can apply to real-world problem solving in the context of urban systems. It focuses on fundamental quantitative and qualitative methods for acquiring knowledge and assessing performance of urban systems. Quantitative methods covered include geographic information systems, advanced Excel methods and basic statistics, and qualitative approaches will include stakeholder engagement as well as ethical guidelines governing work with community groups. The course will also introduce four key types of systems performance: well-being, sustainability, resilience and equity. Topics covered are those students can expect to encounter as they pursue their future careers. The course is also a prerequisite for participation in the Sustainable Urban Systems Projects which take place in Winter (CEE 224Y) and Spring (CEE 224Z).
Those SUS Projects are designed to immerse student teams in current complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered throughout the academic year and may span multiple quarters. Students are expected to interact with professionals and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. To view project descriptions and apply, visit http://sus.stanford.edu/courses.
Same as: CEE 224X

CEE 124Y. Sustainable Urban Systems Project. 1-5 Unit.
Sustainable Urban Systems (SUS) Project is a project-based learning experience being piloted for an upcoming new SUS M.S. Program within CEE. Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered throughout the academic year and may span multiple quarters. Students are expected to interact with professionals and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. To view project descriptions and apply, visit http://sus.stanford.edu/courses.
Same as: CEE 224Y, GEOPHYS 118Y, GEOPHYS 218Y

CEE 124Z. Sustainable Urban Systems Project. 1-5 Unit.
Sustainable Urban Systems (SUS) Project is a project-based learning experience being piloted for an upcoming new SUS M.S. Program within CEE. Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered throughout the academic year and may span multiple quarters. Students are expected to interact with professionals and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. To view project descriptions and apply, visit http://sus.stanford.edu/courses.
Same as: CEE 224Z, GEOPHYS 118Z, GEOPHYS 218Z

CEE 125. Defining Smart Cities: Visions of Urbanism for the 21st Century. 3-4 Units.
Technological innovations have and will disrupt all domains of urban life, from housing to healthcare to city management to transportation. This seminar is aimed at future technologists, entrepreneurs, policymakers, and urban planners to define and evaluate the smartness of a city through three lenses: technology, equity, and policy. Through readings, seminar discussions, guest speakers, and a final project, we will explore how a smart city can leverage technology for a higher quality of life, less inequality in access to services, and tighter human communities. You will come away with a framework for understanding how to maximize the social good of emerging technologies. Course material is appropriate for students from all disciplines. Students who enroll in the course for 4 units will participate in an off-campus field component during Spring Break.
Same as: CEE 225, URBANST 174

CEE 126. International Urbanization Seminar: Cross-Cultural Collaboration for Sustainable Urban Development. 4-5 Units.
(formerly IPS 274) Comparative approach to sustainable cities, with focus on international practices and applicability to China. Tradeoffs regarding land use, infrastructure, energy and water, and the need to balance economic vitality, environmental quality, cultural heritage, and social equity. Student teams collaborate with Chinese faculty and students partners to support urban sustainability projects. Limited enrollment via application; see internationalurbanization.org for details. Prerequisites: consent of the instructor(s).
Same as: EARTHSYS 138, INTLPOL 274, URBANST 145

CEE 126X. Hard Earth: Stanford Graduate-Student Talks Exploring Tough Environmental Dilemmas. 1 Unit.
Stanford's graduate students are a trove of knowledge – and, just as important, curiosity – about environmental sustainability. This seminar will feature talks by graduate students that explore the biggest, most bedeviling questions about environmental sustainability locally and around the world. The course will be structured as follows: every other week, we will hear hour-long graduate student talks about sustainability questions and their research, and on the off weeks, we will discuss the unanswered, debatable questions that relate to the previous week's talk.
Same as: EARTH 126X

CEE 126Y. Hard Earth: Stanford Graduate-Student Talks Exploring Tough Environmental Dilemmas. 1 Unit.
Stanford's graduate students are a trove of knowledge – and, just as important, curiosity – about environmental sustainability. This seminar will feature talks by graduate students that explore the biggest, most bedeviling questions about environmental sustainability locally and around the world. The course will be structured as follows: every other week, we will hear hour-long graduate student talks about sustainability questions and their research, and on the off weeks, we will discuss the unanswered, debatable questions that relate to the previous week's talk.
Same as: EARTH 126Y

CEE 126Z. Hard Earth: Stanford Graduate-Student Talks Exploring Tough Environmental Dilemmas. 1 Unit.
Stanford's graduate students are a trove of knowledge – and, just as important, curiosity – about environmental sustainability. This seminar will feature talks by graduate students that explore the biggest, most bedeviling questions about environmental sustainability locally and around the world. The course will be structured as follows: every other week, we will hear hour-long graduate student talks about sustainability questions and their research, and on the off weeks, we will discuss the unanswered, debatable questions that relate to the previous week's talk.
Same as: EARTH 126Z
CEE 130. Architectural Design: 3-D Modeling, Methodology, and Process. 5 Units.
Preference to Architectural Design majors: others by consent of instructor. Projects investigate conceptual approaches to the design of key architectural elements, such as wall and roof. Functional and structural considerations. Focus is on constructing 3-D models in a range of materials; 3-D computer modeling. Students keep a graphic account of the evolution of their design process. Final project entails design of a simple structure. Limited enrollment. Pre- or corequisite: CEE 31 or 31Q.

CEE 131A. Professional Practice: Mixed-Use Design in an Urban Setting. 4 Units.
The delivery of a successful building design program involves unique collaboration between architect and client. This course will endeavor to teach the skills necessary for a designer to identify, evaluate, conceptualize and fully document a complex mixed-use urban design. Students will complete the course with a detailed knowledge of the consultants, engineers and other professionals needed for a complete program. Course deliverables will include three short assignments and a final project consisting of basic schematic drawings for the selected project. Guest presenters will cover topics of interest. Lectures, discussions, in-class studio-work and an oral presentation. Pre-requisite: CEE 130.

CEE 131B. Financial Management of Sustainable Urban Systems. 3 Units.
Focus is on financial management of sustainable urban systems. The course will study different kinds of financial services available, the management of financial resources, and relationships to financial service providers. The course will also study how financial services and relationships to financial service providers can be used to accomplish construction management, energy, and architecture work in sustainable urban systems. The learning outcome is an understanding of how financial services can be used in development of sustainable urban systems. The course work is structured so that there are three modules: 1) general knowledge of financial management, 2) in-depth application in construction management, energy, or architecture, and 3) comparison of similarities and differences in-between the in-depth applications. Students will focus on one of the in-depth applications in a group work, and present the result of this application to students that make other applications. A key learning aspect is the understanding of how finance is used in construction management, energy, and architecture work. Students should be able to show the value, financial viability, and risk management of sustainable urban system development in construction management, energy, and architecture. Students should be able to finance construction management, energy, and architecture work. Readings include applications of finance and management to construction management, energy, or architecture. Guest speakers include developers, financial managers at construction firms, managers at energy firms, construction managers.

CEE 131C. How Buildings are Made -- Materiality and Construction Methods. 4 Units.
This course will provide an introduction to the materials and methods used in building construction. A combination of in-class lectures, reading assignments, and building site visits will provide students with an awareness of construction materials and their use within building systems. All relevant building types and construction materials will be explored, including wood, steel, concrete and masonry. Building foundations and basic structural systems will be explained. Building envelope elements will be considered, with an analysis of various glass and glazing materials, cladding types, and roofing systems. Interior Floor, wall and ceiling finishes will be discussed. New and emerging building trends will also be examined, such as prefabricated and modular construction. Guest presenters, drawn from Bay Area consulting firms, will cover several topics of interest. Students will have an opportunity to experience real world material applications at local construction sites, and gain a thorough understanding of the construction process.

CEE 131D. Urban Design Studio. 5 Units.
The practical application of urban design theory. Projects focus on designing neighborhood and downtown regions to balance livability, revitalization, population growth, and historic preservation. Same as: URBANST 171

CEE 131E. Team Urban Design Studio. 5 Units.
This new class offers an exciting variation on the 'individual project' studio format. Students work as a team to propose a single consensus solution to a real-world design challenge. This collaborative studio experience more closely reflects the creative process in the design and planning professions where a group of individuals works together to brainstorm, shape, develop, and illustrate a community design solution. There are a number of benefits to this team-oriented approach: it is a more nurturing environment for students that do not have design backgrounds, it allows for more peer-to-peer learning, and it takes best advantage of varied student skill sets. But perhaps the greatest benefit is that a team of students working together on a common project will be able to develop a more comprehensive solution than any one student working alone. This means that the class "deliverable" at the end of quarter could be detailed enough to be of significant value to a stakeholder or client group from the larger community. This studio class, working under the guidance of an experienced instructor, functions like a design firm in providing professional-grade deliverables to real-world community design 'clients'.
Same as: URBANST 183

CEE 131Q. How to be Governed Otherwise: Art, Activism, and the City. 4 Units.
This course will introduce you to contemporary art's engagement with political activism. This introduction will focus on the city as, at once, a field and target of activism, a field of public appearance, artistic intervention, and political action, as well as a target of claims to residence, livelihood, recognition, justice, and collectivity. We will pose activist politics, artistic intervention, and urban space as mutually imbricated, each shaping the possibilities, programs, and histories of the other, a perspective that offers insights into the spatiality, materiality, and visuality of political identity, agency, and action. Over the quarter, we will study some of the many artistic interventions that are accompanied by urban activism, from informal and everyday practices to protest, resistance, and occupation. Comparative case studies will be drawn from a global context. You will investigate these case studies through both research on urban activism and activist practice; the seminar will therefore invite you to explore the militant possibilities of research, the research possibilities of activism, and the implications of each for the production of art. Same as: ARTSINST 180Q, URBANST 180Q

CEE 132H. Responsive Structures. 3 Units.
This Design Build seminar investigates the use of metal as a structural, spatial and organizational medium. We will examine the physical properties of post-formable plywood, and develop a structural system and design which respond to site and programmatic conditions. The process includes model building, prototyping, development of joinery, and culminates in the full scale installation of the developed design on campus. This course may be repeated for credit (up to three times). Class meeting days/times are as follows: April 14, 9a-5p; April 28, 10a-5p; May 3, 7-9p; May 19, 10a-6:30p; May 20, 10a-6:30p.
Same as: CEE 32H
CEE 133G. Architectural History & Drawing in Eastern Europe. 2 Units.
Students in this seminar will travel to Prague, Czech Republic and Krakow, Poland for a week of historical morning walks and discussions about architectural and urbanism in each city. Afternoon sketching sessions will focus attention on some of the locations visited earlier that day. Buildings, sites and monuments from the Middle Ages to the present will be assessed, questioned, and drawn. Short reading assignments and/or films provide a background for each day’s examination of a section of these two cities. Possible day trips may include site visits to Auschwitz and the Wieliczka Salt Mine. Casual late afternoon excursions will complement themes of the course. Upon returning to Stanford, the seminar will meet four times to discuss observations and organize a small exhibition of the sketches made during the trip.

CEE 133H. Painting: Architecture in the Environment. 3 Units.
This five-week course engages students in deconstructing architectural structures in relation to the environment by way of observational painting with acrylics. Through on location painting and studio sessions, students build creative capacities and develop critical thinking skills as we focus on the fundamentals of painting, discuss precedents from art and architectural history, and engage in constructive group critiques. Color theory, as it relates to value and applies to light on form and material, is examined and put into practice as students mix paint and explore a variety of techniques. Volume is a major component as we apply principles of proportion, perspective, and depth to convincingly articulate spatial relationships. Composition and design principles are investigated throughout the painting process, from preparatory graphite sketches through project completion. Active painting is enhanced by focused exercises, demonstrations, slide lectures, readings, and museum visits, all which facilitate a deeper understanding of architecture via painting. (Note: this course meets for only 5 weeks: Jan 8 - Feb 7, 2019).

CEE 134B. Intermediate Arch Studio. 5 Units.
This studio offers students experience in working with a real site and a real client program to develop a community facility. Students will develop site analysis, review a program for development and ultimately design their own solutions that meet client and community goals. Sustainability, historic preservation, community needs and materials will all play a part in the development of students final project. Students will also gain an understanding of graphic conventions, verbal and presentation techniques. Course may be repeated for credit.

Same as: CEE 215
CEE 144. Design and Innovation for the Circular Economy. 3 Units.
The last 150 years of our industrial evolution have been material and energy intensive. The linear model of production and consumption manufactures goods from raw materials, sells and uses them, and then discards the products as waste. Circular economy provides a framework for systems-level redesign. It builds on schools of thought including regenerative design, performance economy industrial ecology, blue economy, biomimicry, and cradle to cradle. This course introduces the concepts of the circular economy and applies them to case studies of consumer products, household goods, and fixed assets. Students will conduct independent projects on circular economy. Students may work alone or in small teams under the guidance of the teaching team and various collaborators worldwide. Class is limited to 14 students. All disciplines are welcome. This class fulfills the Writing & Rhetoric 2 requirement. Prerequisite: PWR 1.

CEE 146S. Engineering Economics and Sustainability. 3 Units.
Engineering Economics is a subset of the field of economics that draws upon the logic of economics, but adds that analytical power of mathematics and statistics. The concepts developed in this course are broadly applicable to many professional and personal decisions, including making purchasing decisions, deciding between project alternatives, evaluating different processes, and balancing environmental and social costs against economic costs. The concepts taught in this course will be increasingly valuable as students climb the career ladder in private industry, a non-governmental organization, a public agency, or in founding their own startup. Eventually, the ability to make informed decisions that are based in fundamental analysis of alternatives is a part of every career. As such, this course is recommended for engineering and non-engineering students alike. This course is taught exclusively online in every quarter it is offered. (Prerequisites: MATH 19 or 20 or approved equivalent.) Same as: ENGR 60

CEE 151. Negotiation. 3 Units.
Students learn to prepare for and conduct negotiations in a variety of arenas including getting a job, managing workplace conflict, negotiating transactions, and managing personal relationships. Interactive class. The internationally travelled instructor who has mediated cases in over 75 countries will require students to negotiate real life case studies and discuss their results in class. Application required before first day of class; students should enroll on Axess and complete the application on Canvas before March 18. Note: there is a class fee of $130 for access to case files and readings.

CEE 155. Introduction to Sensing Networks for CEE. 3-4 Units.
Introduce the design and implementation of sensor networks for monitoring the built and natural environment. Emphasis on the integration of modern sensor and communication technologies, signal processing and statistical models for network data analysis and interpretation to create practical deployments to enable sustainable systems, in areas such as energy, weather, transportation and buildings. Students will be involved in a practical project that may involve deploying a small sensor system, data models and analysis and signal processing. Limited enrollment.

CEE 156. Building Systems. 4 Units.
HVAC, lighting, and envelope systems for commercial and institutional buildings, with a focus on energy efficient design. Knowledge and skills required in the development of low-energy buildings that provide high quality environment for occupants.

CEE 159. Managing Construction Innovation - Practicum. 2-4 Units.
CEE 159/259 students join Stanford researchers in developing performance metrics and key performance indicators, which inform the assessment and management of productivity policies, industry initiatives, progressive enterprises, global projects or experimental processes in the construction industry. This project-based practicum builds upon a global network of government agencies, professional institutions and member companies collaborating with the Center for Integrated Facility Engineering (CIFE). Through a series of Global Construction Innovation Case Studies, students will develop applied research skills that are essential for academic research, internships or industry practice, while gaining insights into innovative and industrialized construction practice, such as the industry applications of Building Information Modeling (BIM), Integrated Project Delivery (IPD), Lean Methodology, Prefabricated Pre-finished Volumetric Construction (PPVC), Smart Cities or Virtual Design and Construction (VDC). Note to students: this course may be taken repeat for credit for up to 9 cumulative units.

CEE 161I. Atmosphere, Ocean, and Climate Dynamics: The Atmospheric Circulation. 3 Units.
Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the atmospheric circulation. Topics include the global energy balance, the greenhouse effect, the vertical and meridional structure of the atmosphere, dry and moist convection, the equations of motion for the atmosphere and ocean, including the effects of rotation, and the poleward transport of heat by the large-scale atmospheric circulation and storm systems. Prerequisites: MATH 51 or CME100 and PHYSICS 41.

CEE 162A. Mechanics of Fluids. 3 Units.
Formerly CEE 101X. Course content is the same as CEE 101B but without the Tuesday lecture and lab component. Permission of the instructor is required first to enroll in CEE 162A. Prerequisites: E14, Physics 41 (formerly 63) Math 51.

CEE 162D. Introduction to Physical Oceanography. 4 Units.
Formerly CEE 164. The dynamic basis of oceanography. Topics: physical environment; conservation equations for salt, heat, and momentum; geostrophic flows; wind-driven flows; the Gulf Stream; equatorial dynamics and ENSO; thermohaline circulation of the deep oceans; and tides. Prerequisite: PHYSICS 41 (formerly 53).

CEE 162E. Rivers, Streams, and Canals. 3-4 Units.
Formerly CEE 161A/264A. Introduction to the movement of water through natural and engineered channels, streams, and rivers. Basic equations and theory (mass, momentum, and energy equations) for steady and unsteady descriptions of the flow. Application of theory to the design of flood-control and canal systems. Flow controls such as weirs and sluice gates; gradually varied flow; Saint-Venant equations and flood waves; and method of characteristics. Open channel flow laboratory experiments: controls such as weirs and gates, gradually varied flow, and waves. Limited enrollment in lab section. Prerequisite: CEE 101B or CEE 162A.

CEE 162F. Coastal Processes. 3 Units.
Formerly Coastal Engineering. Fluid dynamics and sediment transport processes that govern the physical behavior of the coastal ocean. Topics: waves, coastal sediment transport, tides, storm surge, sea-level rise, estuarine circulation, river plumes, and upwelling. Prerequisite: PHYSICS 41 (formerly 53).
CEE 162I. Atmosphere, Ocean, and Climate Dynamics: the Ocean Circulation. 3 Units.
Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the large-scale ocean circulation. This course will give an overview of the structure and dynamics of the major ocean current systems that contribute to the meridional overturning circulation, the transport of heat, salt, and biogeochemical tracers, and the regulation of climate. Topics include the tropical ocean circulation, the wind-driven gyres and western boundary currents, the thermohaline circulation, the Antarctic Circumpolar Current, water mass formation, atmosphere-ocean coupling, and climate variability. Prerequisites: MATH 51 or CME100; and PHYSICS 41; and CEE 162A or CEE 101B or a graduate class in fluid dynamics or consent of the instructor.
Same as: CEE 262I, EARTHSYS 146B, ESS 246B

CEE 163H. Big Earth Hackathon Water Challenge. 2 Units.
Participate in Stanford’s inaugural Big Earth Hackathon Water Challenge by finding an innovative solution to a planetary water problem. Students are tasked to come up with a solution to a water related problem over a seven week period. Projects can be software, hardware, or policy related solutions to important water issues. Students (working individually or in teams of 2-4) are encouraged to pursue a problem of their own interest, but will be provided several opportunities to hear of projects ideas from faculty and industry leaders.
Same as: EARTH 163H, GEOLOG 163H

CEE 165C. Water Resources Management. 3 Units.
Optimal equilibrium between water supply and water demand, under specific local and regional physical, environmental, social and economic constraints. Principles in the context of sustainable development, increasing water scarcity in many parts of the world, and hydrologic uncertainty including that associated with climate change. Operations and water quality in reservoirs, river basins, and groundwater systems; non-conventional water sources; demand management options; and the institutional and legal framework.
Same as: CEE 265C

CEE 166A. Watersheds and Wetlands. 4 Units.
Introduction to the occurrence and movement of water in the natural environment and its role in creating and maintaining terrestrial, wetland, and aquatic habitat. Hydrologic processes, including precipitation, evaporation, transpiration, snowmelt, infiltration, subsurface flow, runoff, and streamflow. Rivers and lakes, springs and swamps. Emphasis is on observation and measurement, data analysis, modeling, and prediction. Prerequisite: CEE 101B or CEE 162A or equivalent. (Freyberg).
Same as: CEE 266A

CEE 166B. Floods and Droughts, Dams and Aqueducts. 4 Units.
Sociotechnical systems associated with human use of water as a resource and the hazards posed by too much or too little water. Potable and non-potable water use and conservation. Irrigation, hydroelectric power generation, rural and urban water supply systems, storm water management, flood damage mitigation, and water law and institutions. Emphasis is on engineering design. Prerequisite: 166A or equivalent. (Freyberg).
Same as: CEE 266B

CEE 171. Environmental Planning Methods. 3 Units.
Intended primarily for juniors and seniors, first year graduate students welcome. Course introduces key environmental policy design and implementation concepts and provides opportunities to work with a range of environmental planning methods. Environmental laws and regulations (e.g., US Clean Water Act and the US National Environmental Policy Act) are examined. Course demonstrates how firms have gone beyond regulatory compliance and introduced environmental sustainability issues into core business strategies. Course uses a simulated negotiation of a financial penalty between a student team representing the US EPA (and other government agencies) and a team representing a firm that is out of compliance with Clean Water Act regulations. Professionals with experience in such negotiations provide coaching for student teams. Prerequisites: MATH 51. Recommended: 70.

CEE 171F. New Indicators of Well-Being and Sustainability. 3 Units.
Explore new ways to better measure human development, comprehensive wealth and sustainability beyond standard economic indicators such as income and GDP. Examine how new indicators shape global, national and local policy worldwide. Well-being topics include health, happiness, trust, inequality and governance. Sustainability topics include sustainable development, environmental performance indicators, material flow analysis and decoupling, and inclusive wealth indicators. Students will build their own indicator of well-being and sustainability for a term paper.

CEE 171G. Environmental & Ecological Economics. 3 Units.
Ideas, tools and policy solutions in environmental and ecological economics covering a wide range of topics: biodiversity and ecosystems management, energy and climate change mitigation, environmental health and environmental justice, new indicators of well-being and sustainability beyond GDP and growth and sustainable urban systems.
Same as: CEE 271G

CEE 172. Air Quality Management. 3 Units.
Quantitative introduction to the engineering methods used to study and seek solutions to current air quality problems. Topics: global atmospheric changes, urban sources of air pollution, indoor air quality problems, design and efficiencies of pollution control devices, and engineering strategies for managing air quality. Prerequisites: 70, MATH 51.

CEE 172A. Indoor Air Quality. 2-3 Units.
Factors affecting the levels of air pollutants in the built indoor environment. The influence of ventilation, office equipment, floor coverings, furnishings, cleaning practices, and human activities on air quality including carbon dioxide, VOCs, resuspended dust, and airborne molds and fungi. Limited enrollment, preference to CEE students. Prerequisites: Math 42 or 21 and CEE 70, or equivalents.
Same as: CEE 278C

CEE 173S. Electricity Economics. 3 Units.
This course develops a foundation of economic principles for the electric utility on the topics of regulation, planning, and operation. A particular emphasis is given to emerging electricity sector topics such as renewable planning and integration, distributed energy resources, energy storage, and market design. The course uses these economic principles to assess the effects of existing and proposed policy including the potential for value creation and disruption.
Same as: CEE 273S

CEE 174A. Providing Safe Water for the Developing and Developed World. 3 Units.
This course will cover basic hydraulics and the fundamental processes used to provide and control water, and will introduce the basics of engineering design. In addition to understanding the details behind the fundamental processes, students will learn to feel comfortable developing initial design criteria (30% designs) for fundamental processes. Students should also develop a feel for the typical values of water treatment parameters and the equipment involved. The course should enable students to work competently in environmental engineering firms or on non-profit projects in the developing world such as Engineers without Borders. Pre-requisite: Chem31B/X.
CEE 174B. Wastewater Treatment: From Disposal to Resource Recovery. 3 Units.
This course builds upon CEE 174A, covering basic hydraulics and the fundamental processes used to treat wastewater. In addition to understanding the details behind the fundamental processes, students will learn to feel comfortable developing initial design criteria (30% designs) for fundamental processes. Students should also develop a feel for the typical values of water treatment parameters and the equipment involved. After covering conventional processes, the class addresses newer processes used to meet emerging treatment objectives, including nutrient removal, composting of biosolids and recycling of wastewater for beneficial uses, including potable reuse. Pre-requisites: CEE 174A.

CEE 175A. California Coast: Science, Policy, and Law. 3-4 Units.
This interdisciplinary course integrates the legal, scientific, and policy dimensions of how we characterize and manage resource use and allocation along the California coast. We will use this geographic setting as the vehicle for exploring more generally how agencies, legislatures, and courts resolve resource-use conflicts and the role that scientific information and uncertainty play in the process. Our focus will be on the land-sea interface as we explore contemporary coastal land-use and marine resource decision-making, including coastal pollution, public health, ecosystem management; public access; private development; local community and state infrastructure; natural systems and significant threats; resource extraction; and conservation, mitigation and restoration. Students will learn the fundamental physics, chemistry, and biology of the coastal zone, tools for exploring data collected in the coastal ocean, and the institutional framework that shapes public and private decisions affecting coastal resources. There will be 3 to 4 written assignments addressing policy and science issues during the quarter, as well as a take-home final assignment. Special Instructions: In-class work and discussion is often done in interdisciplinary teams of students from the School of Law, the School of Engineering, the School of Humanities and Sciences, and the School of Earth, Energy, and Environmental Sciences. Students are expected to participate in class discussion and field trips. Elements used in grading: Participation, including class session and field trip attendance, writing and quantitative assignments. Cross-listed with Civil & Environmental Engineering (CEE 175A/275A), Earth Systems (EARTHSYS 175/275), and Law (LAW 2510). Open to graduate students and to advanced undergraduates with instructor consent. Same as: CEE 275A

CEE 175Q. Changing Human Behavior: Drivers and Barriers in Environmental Action. 2 Units.
Beyond the scientific and technological challenges of climate change, there are important psychological factors and barriers to individual attitude and behavior change. Students will analyze and identify barriers to individual action; distinguish between targeting individual behaviors vs. attitudes; understand specific psychological challenges and opportunities that climate change raises; develop strategies to address these factors in contexts where behavior change is sought. Students will propose and develop their own ideas for addressing a specific psychological barrier to individual action in an environmental context.

CEE 175S. Environmental Entrepreneurship and Innovation. 3 Units.
Our current infrastructure for provision of critical services—clean water, energy, transportation, environmental protection; requires substantial upgrades. As a complement to the scientific and engineering innovations taking place in the environmental field, this course emphasizes the analysis of economic factors and value propositions that align value chain stakeholder interests. Same as: CEE 275S

CEE 176A. Energy Efficient Buildings. 3-4 Units.
Quantitative evaluation of technologies and techniques for reducing energy demand of residential-scale buildings. Heating and cooling load calculations, financial analysis, passive-solar design techniques, water heating systems, photovoltaic system sizing for net-zero-energy all-electric homes. Offered for 3 or 4 units; the 4-unit option includes a lab.

CEE 176B. 100% Clean, Renewable Energy and Storage for Everything. 3-4 Units.
This course discusses elements of a transition to 100% clean, renewable energy in the electricity, transportation, heating/cooling, and industrial sectors for towns, cities, states, countries, and companies. It examines wind, solar, geothermal, hydroelectric, tidal, and wave characteristics and resources; electricity, heat, cold and hydrogen storage; transmission and distribution; matching power demand with supply on the grid: efficiency; replacing fossil with electric appliances and machines in the buildings and industry; energy, health, and climate costs and savings; land requirements; feedbacks of renewables to the atmosphere; and 100% clean, renewable energy roadmaps to guide transitions. Same as: CEE 276B

CEE 176C. Energy Storage Integration - Vehicles, Renewables, and the Grid. 3 Units.
This course will provide in-depth introduction to existing energy storage solutions being used on the electric grid and in vehicles with a primary focus on batteries and electrochemical storage. We will discuss the operating characteristics, cost and efficiency of these technologies and how tradeoff decisions can be made. Special attention will be given to system-level integration of new storage technologies, including chargers, inverters, battery management systems and controls, into the existing vehicle and grid infrastructure. Further investigations include issues relating to integration of electric vehicle charging with demand-side management, scheduled, renewable energy absorption and local grid balancing. Class format involves regular guest lectures, required lab participation, and field trips to relevant sites. Enrollment is limited; if you are interested in taking the course, please fill out a brief questionnaire at http://goo.gl/forms/3YH91Qx05 n Please contact jtaggart@stanford.edu with any questions regarding the application or course information. Same as: CEE 276C

CEE 176G. Sustainability Design Thinking. 3 Units.
Application design thinking to make sustainability compelling, impactful and realizable. Analysis of contextual, functional and human-centered design thinking techniques to promote sustainable design of products and environments by holistically considering space, form, environment, energy, economics, and health. Includes Studio project work in prototyping, modeling, testing, and realizing sustainable design ideas. Same as: CEE 276G

CEE 177. Aquatic Chemistry and Biology. 4 Units.
Introduction to chemical and biological processes in the aqueous environment. Basic aqueous equilibria; the structure, behavior, and fate of major classes of chemicals that dissolve in water; redox reactions; the biochemistry of aquatic microbial life; and biogeochemical processes that govern the fate of nutrients and metals in the environment and in engineered systems. Prerequisite: CHEM 31.

CEE 177L. Smart Cities & Communities. 3 Units.
A city is comprised of people and a complex system of systems. Data provides the connective tissue between those systems. Smart cities use information technology (IT) to harness that data for operational efficiency, efficacy of government services, and sustainability. Key enablers covered include: IoT, open data, analytics, cloud and cognitive computing, and systems of engagement. System case studies will include: water, energy, transportation, buildings, food production, urban design, and social services. The evolving relationship between a city and its citizens as well as the risks / challenges of smart cities will also be explored. Same as: CEE 277L
CEE 177S. Engineering and Sustainable Development. 1-3 Unit.
The second of a two-quarter, project-based course sequence that address cultural, political, organizational, technical and business issues at the heart of implementing sustainable engineering projects in the developing world. Students work in interdisciplinary project teams to tackle real-world design challenges in partnership with social entrepreneurs and/or NGOs. This quarter focuses on implementation, evaluation, and deployment of the designs developed in the winter quarter. Designated a Cardinal Course by the Haas Center for Public Service.
Same as: CEE 277S, ENGR 177B, ENGR 277B

CEE 177X. Engineering and Sustainable Development: Toolkit. 1-3 Unit.
The first of a two-quarter, project-based course sequence that address cultural, political, organizational, technical, and business issues at the heart of implementing sustainable engineering projects in the developing world. Students work in interdisciplinary project teams to tackle real-world design challenges in partnership with social entrepreneurs and/or NGOs. While students must have the skills and aptitude necessary to make meaningful contributions to technical product designs, the course is open to all backgrounds and majors. The first quarter focuses on conceptual design, feasibility analysis, and implementation, evaluation, and deployment. Admission is by application. Following successful completion of ENGR 177A/277A, students have the option to enroll in CEE 177B/277B Engineering & Sustainable Development: Implementation. Designated a Cardinal Course by the Haas Center for Public Service.
Same as: CEE 277X, ENGR 177A, ENGR 277A

CEE 178. Introduction to Human Exposure Analysis. 3 Units.
(Graduate students register for 278.) Scientific and engineering issues involved in quantifying human exposure to toxic chemicals in the environment. Pollutant behavior, inhalation exposure, dermal exposure, and assessment tools. Overview of the complexities, uncertainties, and physical, chemical, and biological issues relevant to risk assessment. Lab projects. Recommended: MATH 51. Apply at first class for admission.
Same as: CEE 276

CEE 179A. Water Chemistry Laboratory. 3 Units.
(Graduate students register for 273A.) Laboratory application of techniques for the analysis of natural and contaminated waters, emphasizing instrumental techniques.
Same as: CEE 273A

CEE 179C. Environmental Engineering Design. 5 Units.
Application of engineering fundamentals including environmental engineering, hydrology, and engineering economy to a design problem. Enrollment limited; preference to seniors in Civil and Environmental Engineering.

CEE 179F. Frontiers of Anaerobic Treatment. 1 Unit.
This seminar will present the latest findings on the operation and performance of ground-breaking anaerobic treatment processes for domestic wastewater. Specifically, this seminar will examine the performance of the Staged Anaerobic Fluidized-bed Membrane Bioreactor (SAF-MBR) using results from ongoing operations at the Codiga Resource Recover Center and from previous and parallel research efforts. The seminars will incorporate a description of the fundamentals of anaerobic treatment processes, a discussion of how the SAF-MBR process is different from traditional anaerobic processes, and insights from operations along with implications for system design. Course work will include explorations of the costs, benefits, and market potential of this technology.
Same as: CEE 279F

CEE 179S. Seminar: Issues in Environmental Science, Technology and Sustainability. 1-2 Unit.
Invited faculty, researchers and professionals share their insights and perspectives on a broad range of environmental and sustainability issues. Students critique seminar presentations and associated readings.
Same as: CEE 279S, EARTHSYS 179S, ESS 179S

CEE 180. Structural Analysis. 4 Units.
Analysis of beams, trusses, frames; method of indeterminate analysis by consistent displacement, least work, superposition equations, moment distribution. Introduction to matrix methods and computer methods of structural analysis. Prerequisite: 101A and ENGR 14.

CEE 181. Design of Steel Structures. 4 Units.
Concepts of the design of steel structures with a load and resistance factor design (LRFD) approach; types of loading; structural systems; design of tension members, compression members, beams, beam-columns, and connections; and design of trusses and frames. Prerequisite: 180.

CEE 182. Design of Reinforced Concrete Structures. 3-4 Units.
Properties of concrete and reinforcing steel; behavior of structural elements subject to bending moments, shear forces, torsion, axial loads, and combined actions; design of beams, slabs, columns and footings; strength design and serviceability requirements; design of simple structural systems for buildings. Prerequisite: 180.

CEE 183. Integrated Civil Engineering Design Project. 4 Units.
Studio format. Design concepts for civil engineering facilities from schematic design through construction, taking into account sustainable engineering issues. Design exercises culminating in the design of a civil engineering facility, emphasizing structural systems and materials and integration with architectural, construction and other project requirements. Prerequisites: CEE 180, 181, 182; CEE 120 (or equivalent background in BIM), civil engineering major; architectural design major with instructor consent.

CEE 192. Laboratory Characterization of Properties of Rocks and Geomaterials. 3-4 Units.
Lectures and laboratory experiments. Properties of rocks and geomaterials and how they relate to chemo-mechanical processes in crustal settings, reservoirs, and man-made materials. Focus is on properties such as porosity, permeability, acoustic wave velocity, and electrical resistivity. Students may investigate a scientific problem to support their own research (4 units). Prerequisites: Physics 41 (or equivalent) and CME 100.
Same as: GEOPHYS 162, GEOPHYS 259

CEE 198. Directed Reading or Special Studies in Civil Engineering. 1-4 Unit.
Written report or oral presentation required. Students must obtain a faculty sponsor.

CEE 199. Undergraduate Research in Civil and Environmental Engineering. 1-4 Unit.
Written report or oral presentation required. Students must obtain a faculty sponsor.

CEE 199A. Special Projects in Architecture. 1-4 Unit.
Faculty-directed study or internship. May be repeated for credit. Prerequisite: consent of instructor.

CEE 199B. Directed Studies in Architecture. 1-4 Unit.
Projects may include studio-mentoring activities, directed reading and writing on topics in the history and theory of architectural design, or investigations into design methodologies.

CEE 199D. Urban Water Supply and Management. 1 Unit.
We will discuss urban runoff and stormwater management for water supply, and use the Stanford campus as a case study. The course will mentor the freshmen about environmental engineering and professional preparation for careers in water supply and water quality engineering.

CEE 199E. Outreach and Mentoring Program Development in CEE. 1-2 Unit.
Open to undergraduates who are declared majors in Civil Engineering, Environmental Engineering, Atmosphere/Energy, and Architectural Design. Will brainstorm and develop an innovative curriculum and engaging activities for CEE 10 (Intro. to the Civil & Environmental Engineering Professions).
CEE 199H. Undergraduate Honors Thesis. 2-3 Units.
For students who have declared the Civil Engineering B.S. honors major and have obtained approval of a topic for research under the guidance of a CEE faculty adviser. Letter grade only. Written thesis or oral presentation required. (Staff).

CEE 199L. Independent Project in Civil and Environmental Engineering. 1-4 Unit.
Prerequisite: Consent of Instructor.

CEE 199S. Undergraduate Summer Research in Civil and Environmental Engineering. 1-6 Unit.
Investigation of a research topic in civil and environmental engineering. For students admitted to the Stanford Summer Session program. Written report or oral presentation required. Students must obtain a faculty or research staff sponsor.

CEE 1A. Graphics Course. 2 Units.
This course, intended for students taking a design studio, will focus on presentation theories, skills and design approaches. Through readings and exercises, and ultimately the student’s own work, students will develop skill and complexity in their graphic and verbal presentations.

CEE 200A. Teaching of Civil and Environmental Engineering. 1 Unit.
Required of CEE Ph.D. students. Strategies for effective teaching and introduction to engineering pedagogy. Topics: problem solving techniques and learning styles, individual and group instruction, the role of TAs, balancing other demands, grading. Teaching exercises. Register for quarter of teaching assistantship: 200A. Aut; 200B. Win; 200C. Spr.

CEE 200B. Teaching of Civil and Environmental Engineering. 1 Unit.
Required of CEE Ph.D. students. Strategies for effective teaching and introduction to engineering pedagogy. Topics: problem solving techniques and learning styles, individual and group instruction, the role of TAs, balancing other demands, grading. Teaching exercises. Register for quarter of teaching assistantship: 200A. Aut, 200B. Win, 200C. Spr.

CEE 200C. Teaching of Civil and Environmental Engineering. 1 Unit.
Required of CEE Ph.D. students. Strategies for effective teaching and introduction to engineering pedagogy. Topics: problem solving techniques and learning styles, individual and group instruction, the role of TAs, balancing other demands, grading. Teaching exercises. Register for quarter of teaching assistantship: 200A. Aut, 200B. Win, 200C. Spr.

CEE 201D. Computations in Civil and Environmental Engineering. 3 Units.
Computational and visualization methods in the design and analysis of civil and environmental engineering systems. Focus is on applications of MATLAB. How to develop a more lucid and better organized programming style.
Same as: CEE 101D

CEE 201S. Science & Engineering Problem-Solving with MatLab.. 3 Units.
Introduction to the application of MATLAB as a powerful tool to solve a variety of science and engineering problems. Exposure to computational and visualization tools available through MATLAB to analyze, solve, and visualize some common problems of interest in science and engineering. Prerequisite: Calculus. Note: students enrolling in CEE 201S must seek the consent of instructor.
Same as: CEE 101S

CEE 202. Construction Law and Claims. 3 Units.
Concepts include the preparation and analysis of construction claims, cost overrun and schedule delay analysis, general legal principles, contracts, integrated project delivery, public private partnerships and the resolution of construction disputes through ADR and litigation. Requires attendance of the ten weeks of Monday classes and the first five weeks of Wednesday classes.

CEE 203. Probabilistic Models in Civil Engineering. 3-4 Units.
Introduction to probability modeling and statistical analysis in civil engineering. Emphasis is on the practical issues of model selection, interpretation, and calibration. Application of common probability models used in civil engineering including Poisson processes and extreme value distributions. Parameter estimation. Linear regression.

CEE 204. Structural Reliability. 3-4 Units.

CEE 205A. Structural Materials Testing and Simulation. 3-4 Units.
Hands-on laboratory experience with fabrication, computer simulation, and experimental testing of material and small-scale structural components. Comparison of innovative and traditional structural materials. Behavior and application of high-performance fiber reinforced concrete materials for new design, fiber-reinforced polymeric materials for structural retrofits and introduction to sustainable, bio-based composites. Prerequisites: basic course in reinforced concrete design CEE 182 or equivalent.

CEE 205B. Advanced Topics in Structural Concrete. 3 Units.
Concepts and application of strut and tie modeling including deep beams, design for torsion resistance, beam-column joints, bridge components, and post-tensioned anchor zones. Course project integrating computer simulation and physical experimentation of a structural concrete component. Prerequisites: CEE 285A or equivalent.

CEE 206. Decision Analysis for Civil and Environmental Engineers. 3 Units.
Current challenges in selecting an appropriate site, alternate design, or retrofit strategy based on environmental, economic, and social factors can be best addressed through applications of decision science. Basics of decision theory, including development of decision trees with discrete and continuous random variables, expected value decision making, utility theory value of information, and elementary multi-attribute decision making will be covered in the class. Examples will cover many areas of civil and environmental engineering problems. Prerequisite: CEE 203 or equivalent.
CEE 207A. Understanding Energy. 3-5 Units.
Energy is the number one contributor to climate change and has significant consequences for our society, political system, economy, and environment. Energy is also a fundamental driver of human development and opportunity. In taking this course, students will not only understand the fundamentals of each energy resource – including significance and potential, conversion processes and technologies, drivers and barriers, policy and regulation, and social, economic, and environmental impacts – students will also be able to put this in the context of the broader energy system. Both depletable and renewable energy resources are covered, including oil, natural gas, coal, nuclear, biomass and biofuel, hydroelectric, wind, solar thermal and photovoltaics (PV), geothermal, and ocean energy, with cross-cutting topics including electricity, storage, climate change and greenhouse gas emissions (GHG), sustainability, green buildings, energy efficiency, transportation, and the developing world. The course is 4 units, which includes lecture and in-class discussion, readings and videos, assignments, and two off-site field trips. Field trip offerings differ each fall (see syllabus for updated list), but may include Diablo Canyon nuclear power plant, Shasta dam, Tesla Gigafactory, NextEra wind farm, San Ardo oil field, Geyser’s geothermal power plants, etc. Students choose two field trips from approximately 8 that are offered. Enroll for 5 units to also attend the Workshop, an interactive discussion section on cross-cutting topics that meets once per week for 80 minutes (timing TBD). The 3-unit option requires instructor approval - please contact Diana Ginnebaugh. Open to all: pre-majors and majors, with any background! The course was formerly called Energy Resources. Website: http://web.stanford.edu/class/cee207a/ nFor a course that covers all of this but goes less in-depth into the technical aspects of each energy resource, check out CEE 107S/207S Understanding Energy: Essentials, offered spring and summer (cannot take both for credit). Prerequisites: Algebra. May not be taken for credit by students who have completed CEE 107S/207S or CEE 107E.
Same as: CEE 107A, EARTHSYS 103

CEE 207R. E^3: Extreme Energy Efficiency. 3 Units.
Be part of a unique and intense six day course about extreme energy efficiency taking place during Spring Break at Rocky Mountain Institute’s Innovation Center in Basalt, Colorado! Students will also meet several times during the quarter prior to the spring break portion of the course. E^3 will focus on efficiency techniques’ design, performance, choice, evolution, integration, barrier-busting, profitable business-led implementation, and implications for energy supply, competitive success, environment, development, security, etc. Examples will span very diverse sectors, applications, issues, and disciplines, with each day covering a different energy theme: buildings, transportation, industry, and implementation and implications, including renewable energy synergy and integration. Solid technical grounding and acquaintance with basic economics and business concepts will both be helpful. Rocky Mountain Institute (RMI) will design a series of lectures, exercises, and interactive activities synthesizing integrative design principles. Students will be introduced to Factor 10 Engineering, the approach for optimizing the whole system for multiple benefits. Students will work closely and interactively with RMI staff including Amory Lovins, cofounder and Chief Scientist of Rocky Mountain Institute (RMI). Exercises will illuminate challenges RMI has faced and solutions it has created in real-world design. Students will explore clean-sheet solutions that meet end-use demands and optimize whole-system resource efficiency, often with expanding rather than diminishing returns to investments, i.e. making big savings cheaper than small ones. Students will meet as a class once during winter quarter to discuss preparation and spring break logistics. Students must pay for their own travel to and from Basalt, CO (~$400). Lodging and food will be provided during the course. Students must apply - instructor approval required. All backgrounds and disciplines, both undergraduate and graduate, are welcome to apply. Prerequisite - completion of one of the following courses or their equivalent is required: CEE 107A/207A/Earthsys 103, CEE 107S/CEE 207S, CEE 176A, CEE 176B. Contact Diana Ginnebaugh at moongdes@stanford.edu for an application. Course details are available at the website: https://web.stanford.edu/class/cee207r/.
Same as: CEE 107R
CEE 207S. Understanding Energy - Essentials. 3-4 Units.
Energy is the number one contributor to climate change and has significant consequences for our society, political system, economy, and environment. Energy is also a fundamental driver of human development and opportunity. Students will learn the fundamentals of each energy resource—including significance and potential, drivers and barriers, policy and regulation, and social, economic, and environmental impacts—and will be able to put this in the context of the broader energy system. Both depletable and renewable energy resources are covered, including oil, natural gas, coal, nuclear, biomass and biofuel, hydroelectric, wind, solar thermal and photovoltaics (PV), geothermal, and ocean energy, with cross-cutting topics including electricity, storage, climate change and greenhouse gas emissions (GHG), sustainability, green buildings, energy efficiency, transportation, and the developing world. The course is 3 units, which includes lecture, readings and videos, assignments, and one off-site field trips. Field trip offerings differ each quarter (see syllabus for updated list), but for the spring quarter may include Diablo Canyon nuclear power plant, Shasta dam, Tesla Gigafactory, NextEra wind farm, San Ardo oil field, Geyser geothermal power plants, etc. Students choose one field trip from approximately 8 that are offered. For the summer quarter, one off-campus field trip will be offered and required. Enroll for 4 units to also attend the Workshop, an interactive discussion section on cross-cutting topics that meets once per week for 80 minutes (timing TBD). This is a course for all: pre-majors and majors, with any background or no prior energy knowledge necessary. For a course that covers all of this plus goes more in-depth into the technical aspects of each energy resource, check out CEE 107A/207A/EarthSys 103 Understanding Energy offered in the autumn quarter (cannot take both for credit). This course was formerly called Energy Resources. Website: http://web.stanford.edu/class/cee207a
Prerequisites: Algebra. May not be taken for credit by students who have completed CEE 107A/207A/EarthSys 103.
Same as: CEE 107S

CEE 209B. Disaster Risk and International Development Seminar. 2 Units.
The human and economic impacts of natural disasters are ever increasing and disproportionately affecting lower-income countries. In fact there is mounting evidence that these ever more frequent shocks threaten to reverse development progress in low-income countries. This seminar course will explore the theory and practice of disaster risk reduction in international development contexts. Weekly readings (and occasional guest lectures) will cover key issues in development theory, a history of "a risk society", participation, human-centered planning, ethics in engineering, and other topics. The seminar will be structured through weekly readings, brief writing responses and group discussion.

CEE 209S. Disaster Resilience Seminar. 1 Unit.
This seminar will present topics associated with quantifying, communicating and improving the resilience of urban areas to disasters. Speakers from a range of disciplines will present current research, application, and thinking on innovations, current best practices and the future of disaster resilience. Guest speakers, supplemental reading, and group discussion will be utilized to teach about the complex nature of natural disasters, the impacts on different regions, and the multi-disciplinary/multi-cultural ways of thinking to prepare communities.

CEE 212A. Industry Applications of Virtual Design & Construction. 2-4 Units.
Building upon the concept of the VDC Scorecard, CEE 112A/212A investigates in the management of Virtual Design and Construction (VDC) programs and projects in the building industry. Interacting with experts and professionals in real estate, architecture, engineering, construction and technology providers, students will learn from the industry applications of Building Information Modeling and its relationship with Integrated Project Delivery, Sustainable Design and Construction, and Virtual Design and Construction. Students will conduct case studies to evaluate the maturity of VDC planning, adoption, technology and performance in practice. Students taking 3 or 4 units will be paired up with independent research or case study projects on the industry applications of VDC. No prerequisite. See CEE 112B/212B in the Winter Quarter and CEE 112C/212C in the Spring Quarter.

CEE 212B. Industry Applications of Virtual Design & Construction. 2-4 Units.
CEE 112B/212B is a practicum on the Industry Applications on Virtual Design and Construction (VDC). Students will gain insights and develop skills that are essential for academic research, internships or industry practice in VDC and Building Information Modeling (BIM). Students can choose between one of the two project topics: [1] Industrialized Construction with Virtual Parts (No Prerequisite) or [2] Industry Benchmarking & Applications of the VDC Management Scorecard (Suggested Prerequisite: CEE 112A/212A).
Same as: CEE 112B

CEE 212C. Industry Applications of Virtual Design & Construction. 2-4 Units.
Following the Autumn- and Winter-quarter course series, CEE 112C/212C is an industry-focused and project-based practicum that focuses on the industry applications of Virtual Design and Construction (VDC). Students will be paired up with industry-based VDC projects with public owners and private developers, such as GSA Public Buildings Service, the Hong Kong Mass Transit Railway, Optima, Walt Disney Imagineering, Microsoft facilities and/or other CIFE International members. Independently, students will conduct case studies and/or develop VDC and building information models (BIM) using off-the-shelf technologies for project analysis, collaboration, communication and optimization. Students will gain insights and develop skills that are essential for academic research, internships or industry practice in VDC. Prerequisite: CEE 112A/212A, CEE 112B/212B, CEE 159C/259C, CEE 159D/259D, or Instructor's Approval.
Same as: CEE 112C

CEE 212D. Industry Applications of Virtual Design and Construction. 2-4 Units.
A continuation of the CEE 112/212 series, CEE 112D/212D is an industry-focused and project-based practicum that focuses on the industry applications of Virtual Design and Construction (VDC). Students will be paired up with industry-based VDC research or application opportunities with public owners and private developers, professional associations, and/or other member organizations of the Center for Integrated Facility Engineering at Stanford. Independently, students will conduct case studies, research activities, and/or develop VDC and building information models (BIM) using off-the-shelf technologies for project analysis, collaboration, communication and optimization. Students will gain insights and develop skills that are essential for academic research, internships or industry practice in VDC. Prerequisite: CEE 110/210, CEE 112C/212C, CEE 122B/222B, or Instructor’s Approval.
Same as: CEE 112D

Stanford Bulletin 2018-19
CEE 213. Patterns of Sustainability. 1-4 Unit.
This seminar examines the interrelated sustainability of the natural, built and social environments of places in which we live. Several BOSP centers and the home Stanford campus will hold this 1-2 unit seminar simultaneously and collaborate with a shared curriculum, assignments, web conference and a Wiki. The goal of the collaborative arrangement is to expose, share, compare and contrast views of sustainability in different parts of the world. We will look at and assess aspects of sustainability of the places we are living from a theoretical perspective from the literature, from observations and interviews in the countries in which we study.
Same as: CEE 113

CEE 217. Renewable Energy Infrastructure. 2 Units.
Construction of renewable energy infrastructure: geothermal, solar thermal, solar photovoltaic, wind, biomass. Construction and engineering challenges and related issues and drivers for performance, cost, and environmental impact. Context of renewable energy infrastructure development including comparison of the types of renewable energy, key economic, environmental, and social contextual factors, applicability of a type of renewable energy given a context, related barriers and opportunities. Class project to plan a start-up for developing a type of energy infrastructure based on an engineering innovation.

CEE 220A. Building Information Modeling Workshop. 3 Units.
The foundational Building Information Modeling course introduces techniques for creating, managing, and applying of building information models in the building design and construction process. The course covers processes and tools for creating, organizing, and working with 2D and 3D computer representations of building components and geometries to produce models used in architectural design, construction planning and documentation, rendering and visualization, simulation and analysis.
Same as: CEE 120A

CEE 220B. Building Information Modeling Workshop. 2-4 Units.
This course builds upon the Building Information Model concepts introduced in 120A/220A and illustrates how BIM modeling tools are used to design, analyze, and model building systems including structural, mechanical, electrical, plumbing and fire protection. Course covers the physical principles, design criteria, and design strategies for each system and explores processes and tools for modeling those systems and analyzing their performance. Topics include: building envelopes, access systems, structural systems modeling and analysis, mechanical / HVAC systems, plumbing and fire protection systems, electrical systems, and systems integration/coordination.
Same as: CEE 120B

CEE 220C. Parametric Design and Optimization. 2-4 Units.
This course explores tools and techniques for computational design and parametric modeling as a foundation for design optimization. Class sessions will introduce several parametric design modeling platforms and scripting environments that enable rapid generation of 3D models and enable rapid evaluation of parametrically-driven design alternatives. Topics to be featured include: n-Principles of parametric design vs. direct modeling n-Design exploration using parametric modeling platforms (Revit/Formit, Rhino)n-Visual scripting languages and environments (Dynamo, Grasshopper, DesignScript)n-Single- and multi-dimensional optimization techniques and guidance strategies.
Same as: CEE 120C

CEE 220S. Building Information Modeling Special Study. 2-4 Units.
Special studies of Building Information Modeling strategies and techniques focused on creating, managing, and applying models in the building design and construction process. Processes and tools for creating, organizing, and working with 2D and 3D computer representations of building components to produce models used in design, construction planning, visualization, and analysis.
Same as: CEE 120S

CEE 221A. Planning Tools and Methods in the Power Sector. 3-4 Units.
This course covers the planning methods most commonly used in the power sector today. It covers both the fundamental methods used and their applications to electricity generation, transmission and distribution planning, integrated resource planning using both energy efficiency and renewable resources as well as utility finance and ratemaking. The methods covered will include forecasting (time series, regression and the use of markets), resource assessment (including energy efficiency and demand-side management) optimization (in power markets operation and in expansion planning) and the processes used in decision-making.

CEE 222A. Computer Integrated Architecture/Engineering/Construction (AEC) Global Teamwork. 3 Units.
AEC students engage in a crossdisciplinary, collaborative, geographically distributed, and multicultural project-based teamwork. AEC teams exercise their domain knowledge and information technologies in a multidisciplinary context focusing on the design and construction concept development phase of a comprehensive building project. Prerequisite: interview with Instructor in Autumn Quarter.

CEE 222B. Computer Integrated Architecture/Engineering/Construction (AEC) Global Teamwork. 2 Units.
Global AEC student teams continue their project activity focusing on the most challenging concept developed in 222A and chosen jointly with their client. Comprehensive team project focusing on design and construction, including: project development and documentation; detailing, 3D and 4D modeling, simulation, sustainable concepts, cost benefit analysis, and life-cycle cost analysis; and final project presentation of product and process. Prerequisite: CEE 222A.

CEE 223. Materials for Sustainable Built Environments. 3 Units.
In this course, students will learn about new and traditional construction materials for use in sustainable building and infrastructure projects. Materials will include cement-based materials and fiber-reinforced polymer composites for structural and non-structural applications, as well as novel materials for e.g., facades, insulation, and paving. Material properties, their performance over time and their impact on people and the environment will be discussed. Course project as well as some hands-on laboratory work. Pre-requisite: CEE 101A or equivalent.

CEE 223A. Cement-based Materials, Properties and Durability. 2 Units.
Students will develop an understanding of the chemical and physical processes of cement and concrete hydration, strength development, mechanical performance and durability. Students will learn how the properties of materials and admixture combine to create a wide range of cement-based materials used in the built environment. The course will address sustainable construction, including the use of alternative cements, admixtures, and aggregates. Students will apply the principles in this course to various aspects of civil and structural engineering, including innovative mix design specification and review, structural investigations and failure analysis, and cementitious materials research.

CEE 224A. Sustainable Development Studio. 1-5 Unit.
(Undergraduates, see 124) Project-based. Sustainable design, development, use and evolution of buildings; connections of building systems to broader resource systems. Areas include architecture, structure, materials, energy, water, air, landscape, and food. Projects use a cradle-to-cradle approach focusing on technical and biological nutrient cycles and information and knowledge generation and organization. May be repeated for credit.

CEE 224S. Sustainable Urban Systems Seminar. 1 Unit.
The Sustainable Urban Systems (SUS) Seminar Series will feature speakers from academia, practice, industry, and government who are on the forefront of research and innovation in sustainable urban systems. The SUS Seminar will be open to the public; students will have the option of obtaining 1 unit of course credit based on attendance and completion of writing assignments.
Same as: CEE 124S
CEE 224X. Sustainable Urban Systems Fundamentals. 3-5 Units.
This course is designed to provide students with fundamental mindsets and toolsets that they can apply to real-world problem solving in the context of urban systems. It focuses on fundamental quantitative and qualitative methods for acquiring knowledge and assessing performance of urban systems. Quantitative methods covered include geographic information systems, advanced Excel methods and basic statistics, and qualitative approaches will include stakeholder engagement as well as ethical guidelines governing work with community groups. The course will also introduce four key types of systems performance: well-being, sustainability, resilience and equity. Topics covered are those students can expect to encounter as they pursue their future careers. The course is also a prerequisite for participation in the Sustainable Urban Systems Projects which take place in Winter (CEE 224Y) and Spring (CEE 224Z). Those SUS Projects are designed to immerse student teams in current planning challenges through service to local public and private sector stakeholders; they will require high levels of self-driven learning, time commitment, professionalism, and collaboration. Open to undergraduate and graduate students in any major. For more information, visit http://sus.stanford.edu/courses.
Same as: CEE 124X

CEE 224Y. Sustainable Urban Systems Project. 1-5 Unit.
Sustainable Urban Systems (SUS) Project is a project-based learning experience being piloted for an upcoming new SUS M.S. Program within CEE. Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered throughout the academic year and may span multiple quarters. Students are expected to interact with professionals and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. To view project descriptions and apply, visit http://sus.stanford.edu/courses/.
Same as: CEE 124Y, GEOPHYS 118Y, GEOPHYS 218Y

CEE 224Z. Sustainable Urban Systems Project. 1-5 Unit.
Sustainable Urban Systems (SUS) Project is a project-based learning experience being piloted for an upcoming new SUS M.S. Program within CEE. Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered throughout the academic year and may span multiple quarters. Students are expected to interact with professionals and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. To view project descriptions and apply, visit http://sus.stanford.edu/courses/.
Same as: CEE 124Z, GEOPHYS 118Z, GEOPHYS 218Z

CEE 225. Defining Smart Cities: Visions of Urbanism for the 21st Century. 3-4 Units.
Technological innovations have and will disrupt all domains of urban life, from housing to healthcare to city management to transportation. This seminar is aimed at future technologists, entrepreneurs, policymakers, and urban planners to define and evaluate the smartness of a city through three lenses: technology, equity, and policy. Through readings, seminar discussions, guest speakers, and a final project, we will explore how a smart city can leverage technology for a higher quality of life, less inequality in access to services, and tighter human communities. You will come away with a framework for understanding how to maximize the social good of emerging technologies. Course material is appropriate for students from all disciplines. Students who enroll in the course for 4 units will participate in an off-campus field component during Spring Break.
Same as: CEE 125, URBANST 174

CEE 226. Life Cycle Assessment for Complex Systems. 3-4 Units.
Life cycle modeling of products, industrial processes, and infrastructure/building systems; material and energy balances for large interdependent systems; environmental accounting; and life cycle costing. These methods, based on ISO 14000 standards, are used to examine emerging technologies, such as biobased products, building materials, building integrated photovoltaics, and alternative design strategies, such as remanufacturing, dematerialization, LEED, and Design for Environment: DfE. Student teams complete a life cycle assessment of a product or system chosen from industry.

CEE 226E. Advanced Topics in Integrated, Energy-Efficient Building Design. 2-3 Units.
This class explores innovative methods for designing, developing, and financing high performance, low energy buildings. Students will learn best practices to reduce building energy buildings. Students will learn best practices to reduce building energy use and integrate solar PV generation in pursuit of commercial Net Zero Energy buildings. Lectures include presentations and panels featuring leading practitioners and researchers in the field. Optional site visits to local Net Zero Energy and LEED buildings provide context to support lectures. CEE 176A and CEE 156/256 or similar courses are recommended prerequisites but not required. All students are expected to participate in a group-based, term project focused on the design and development of a Net Zero Energy building. Students taking the course for two units will not be required to complete in-class assignments for individual homework assignments.

CEE 227. Global Project Finance. 4 Units.
Public and private sources of finance for large, complex, capital-intensive projects in developed and developing countries. Benefits and disadvantages, major participants, risk sharing, and challenges of project finance in emerging markets. Financial, economic, political, cultural, and technological elements that affect project structures, processes, and outcomes. Case studies. Limited enrollment.

CEE 228. Methods in Urban Systems. 3 Units.
Introduction to quantitative tools and methods for solving problems in urban systems, including geographic information science (GIS), modeling, data analysis, and programming methodologies.

CEE 229A. Reinventing the Design & Construction of Buildings. 2-3 Units.
Challenge to students from all departments – Making buildings is still painfully laborious and expensive. Can you radically rethink how buildings are designed and constructed? This project-based course balances theory, research, design. We will 1) study why/how Architecture and Construction industry are lagging behind other industries, 2) work with leading professionals to analyze roadblocks preventing them from building cheaper, faster, better, and 3) develop solutions to tackle these problems and advance the industry. You will consider questions such as: Why does it take 6-9 months to build a single family home? Can AI accelerate the architectural design process? How can designers leverage data/IoT? Which new materials offer significant savings and can be adopted for global solutions? Where can the supply chain be optimized? How can we design new technologies that tradesmen and luddites will use? The course is two terms (Winter CEE 229A, Spring CEE 229B).

CEE 229B. Reinventing the Design & Construction of Buildings. 2-3 Units.
Challenge to students from all departments – Making buildings is still painfully laborious and expensive. Can you radically rethink how buildings are designed and constructed? This project-based course balances theory, research, design. We will 1) study why/how Architecture and Construction industry are lagging behind other industries, 2) work with leading professionals to analyze roadblocks preventing them from building cheaper, faster, better, and 3) develop solutions to tackle these problems and advance the industry. You will consider questions such as: Why does it take 6-9 months to build a single family home? Can AI accelerate the architectural design process? How can designers leverage data/IoT? Which new materials offer significant savings and can be adopted for global solutions? Where can the supply chain be optimized? How can we design new technologies that tradesmen and luddites will use? The course is two terms (Winter CEE 229A, Spring CEE 229B).
CEE 229S. Climate Change Adaptation in the Coastal Built Environment. 1 Unit.
How will climate change impact coastal ports and harbors around the world? Leading experts discuss the latest science, policy, and engineering research on this important issue, including the necessary response to protect ports and harbors from significant sea-level rise and storm surge. Focus is on the built environment. Guest speakers. CEE 229/129 for research option. See www.groupspaces.com/seaports2100.

CEE 230. Urban Development and Governance. 3 Units.
Introduction to urban planning, policy, politics, and governance by a lecture team from SPUR. Focus on the U.S., California, and the Bay Area. Same as: PUBLP 130, PUBLP 230, URBANST 130

CEE 231. Urban Design. 3 Units.
Introduction to principles of urban design, including buildings, infrastructure, and landscape.

CEE 234B. Intermediate Arch Studio. 5 Units.
This studio offers students experience in working with a real site and a real client program to develop a community facility. Students will develop site analysis, review a program for development and ultimately design their own solutions that meet client and community goals. Sustainability, historic preservation, community needs and materials will all play a part in the development of students' final project. Students will also gain an understanding of graphic conventions, verbal and presentation techniques. Course may be repeated for credit. Same as: CEE 134B

CEE 237B. Advanced Architecture Studio. 6 Units.
This course will focus on the topic of interdisciplinary collaboration and its role in the development of design concepts. Specifically, the integration of structural with architectural considerations to produce a unified urban, spatial, tectonic and structural proposition will be our field of investigation. This course is an architecture studio course where class time will be spent primarily in individual or group desk critiques and pin-up sessions. May be repeat for credit. Total completions allowed: 3. Additionally, there will be lectures, case study presentations and a field trip. Prerequisites: required: CEE 31 (or 31Q) Drawing, CEE 110 BIM and CEE 130 Design. Same as: CEE 137B

CEE 239. Design Portfolio Methods. 4 Units.
The portfolio is an essential creative tool used to communicate academic work, design philosophies, and professional intent. This course will explore elements of graphic design, presentation, communication, binding, printing, and construction, yielding a final portfolio (physical and digital) for professional, academic or personal purposes. Limited enrollment. Prerequisites: two Art, Design, or Architecture studio courses, or consent of instructor. Same as: CEE 139

CEE 240. Project Assessment and Budgeting. 3 Units.
Course objectives: 1) learn the processes of determining the quantities of permanent materials required and the associated construction quantities; 2) learn the capabilities of construction equipment; 3) be introduced to the make-up of construction crews; 4) design concrete form systems; 5) utilize the historic productivity of a crew to estimate the cost of construction; 6) write construction logic to create a critical path project schedule; 7) distribute the cost of construction over schedule activities to generate a cash flow curve and monthly payment schedule for the project.nConstruction engineering: A construction project that has reached final design must be quantified, a delivery schedule developed, it’s final total price determined and the month by month demand for cash payments established. Each student will perform these activities to satisfy a "Course Project" requirement utilizing actual project design drawings obtained from the companies of the Guest Lectures and others. Guest Lecturers from: Disney Construction, Pankow Construction, Granite Construction, Stacy & Witbeck Incorporated.
CEE 242P. Designing Project Organizations. 2 Units.
Sequel to CEE 242T. Course develops information-processing approach for designing project and project-based company organizations to deliver sustainable construction projects; includes design of organizations and work processes for integrated project delivery and public-private partnership concession project delivery. Term project applies computer-based organization simulation to optimize design of project organization for a participating company.

CEE 242R. Project Risk Analysis. 3 Units.
Teaches principles and methods for quantitative modeling and mitigation of risks in project planning, design, construction and operation, using new MS Excel capabilities and standardized probability distributions. Several case studies will be covered, including ongoing work with PG&E to roll up operational risks.

CEE 242T. Organizational Behavior and Design for Construction. 2 Units.
Introduction to organizational behavior and organizational design for Architecture, Engineering and Construction projects and companies. Class incorporates readings, individual and group case study assignments. Students use computer simulation to analyze project organizations and predict schedule, cost and quality risks. This class is a prerequisite for CEE 242P.

CEE 243. Intro to Urban Sys Engrg. 3 Units.
This course is an introduction to the interdisciplinary domain of urban systems engineering. It will provide you with a high-level understanding of the motivation for studying sustainable cities and urban systems, systems-based modeling approaches and the social actor theories embedded in the urban sustainability decision making process. Coursework will be comprised of three group mini-projects corresponding to course modules.

CEE 244. Accounting, Finance & Valuation for Engineers & Constructors. 2 Units.

CEE 246. Venture Creation for the Real Economy. 3-4 Units.
CEE 246 is a unique course geared toward developing entrepreneurial businesses (both start-ups and internal ventures). This team, project-based class teaches students how to exploit emerging materials science, engineering and IT technologies to radically apply innovation to the real economy e.g., new products and services that produce real economic value for society as well as for the entrepreneurs. Areas of focus include: Sustainable Buildings and Infrastructure, Digital Cities and Communities, Clean Energy, Transportation and Logistics, Advanced Manufacturing, Digital Health Care, and Education. With one-on-one support from seasoned industry mentors and influential guest speakers, the course guides students through the three key elements of new venture creation: identifying opportunities, developing business plans, and determining funding sources. The class culminates with business presentations to industry experts, VCs and other investors. The goal is to equip students with the knowledge and network to create impactful business ideas, many of which have been launched from this class. To apply for this limited enrollment course, students must submit the following application: https://goo.gl/forms/uefl4gcMPlabUdxM2.

CEE 246B. Real Estate Development and Finance. 3 Units.
Introduction to the Real Estate Development Process from conception, feasibility analysis, due diligence, entitlements, planning, financing, market analysis, contract negotiation, construction, marketing, asset management and disposition. Pro-forma and Financial modeling in Real Estate. Financing options for different types of Real Estate projects and products. Redevelopment projects. Affordable Housing. The class will combine lectures, case studies, field work (Group Project) and guest speakers. Recommended knowledge of spreadsheets. Prerequisites: highly recommended Engineering Economy (CEE 246A or ENGR 60) or any Introduction to Finance class (concepts of Present Worth and IRR). Attendance to the first class is mandatory.

CEE 246S. Real Estate Finance Seminar or Real Estate Career Development Seminar. 1 Unit.
Real Estate Development and Finance presented by industry guest speakers. Executives from different Real Estate companies will give an overview of their business and projects. (Residential, Retail, Commercial, Mixed Used, REITs, Redevelopment Projects, Affordable Housing, public and private real estate companies, real estate funds, etc.). Short Real Estate Case Studies will be given as homework. Two optional field trips. Attendance to the first class is mandatory.

CEE 247A. Network Governance. 3-4 Units.
This course aims at providing students with insights, concepts and skills needed to understand the dynamics of multi-actor interaction processes in uncertain and often highly politicized contexts and to be able to cope with technological and strategic uncertainties and risks including the unpredictable behavior of actors. They will develop knowledge, skills and competences about how to manage divergent and conflicting interests of different actors including principles of integrative negotiation, communication and mediation.

CEE 248. Introduction to Real Estate Development. 2 Units.
This course will offer students an introduction to Real Estate Development. Senior Principals from Sares Regis, a regional commercial and residential real estate development company, will cover topics on all aspects of the development process. Guest speakers from the fields of architecture and engineering, finance and marketing will participate in some of the classes. They will offer the students a window into the world of how houses, apartments, office buildings and public facilities are conceived of, brought through the design and approval process, financed, marketed and then sold and/or rented. There will be nine 1.5-hour lectures (robust class discussion encouraged). Throughout the quarter, the students will work on a group case study assignment about one local project that is currently being built or was recently completed. This assignment will be due in the form of a presentation during the final exam period. No prior knowledge of real estate is required. Classes commence on April 4th and complete on May 30th. Number of students is limited to 30. Undergraduates must apply by submitting a one-page essay explaining their interest in taking the class to mradyk@srnc.com by March 8, 2019.

CEE 249. Labor and Industrial Relations: Negotiations, Strikes, and Dispute Resolution. 2 Units.
Labor/management negotiations, content of a labor agreement, strikes, dispute resolution, contemporary issues affecting labor and management, and union versus open shop competitiveness in the marketplace. Case studies; presentations by union leaders, legal experts, and contractor principals. Simulated negotiation session with union officials and role play in an arbitration hearing.
CEE 251. Negotiation. 3 Units.
Students learn to prepare for and conduct negotiations in a variety of arenas including getting a job, managing workplace conflict, negotiating transactions, and managing personal relationships. Interactive class. The internationally travelled instructor who has mediated cases in over 75 countries will require students to negotiate real life case studies and discuss their results in class. Application required before first day of class; students should enroll on Axess and complete the application on Canvas before March 18. Note: there is a class fee of $130 for access to case files and readings.
Same as: CEE 151, EARTH 251, PUBLPOL 152

CEE 252. Construction Methods for Concrete and Steel Structures. 3 Units.

CEE 252Q. Construction Engineering Fundamentals. 2 Units.
Construction engineering is a series of technical activities to meet project objectives related to cost and schedule, safety, quality, and sustainability. These activities include: 1) designing temporary works and construction work processes; 2) providing the required temporary and permanent resources; and 3) integrating activities to consider construction during all project phases and between projects. The objectives of CEE 252Q are to learn about the technical fundamentals, resources, and field operations required to complete construction engineering activities and to develop a foundation for continued related learning. The course requires reviewing recorded presentations and other online resources, completing queries, participating in class sessions with guest speakers and in field trips, and completing group exercises and projects. The exercises, completed by all of the student groups, include construction engineering activities for earthwork, concrete construction, and steel erection. Each group will also complete a project to analyze one of the following types of systems or facilities: building electrical systems, lighting systems, HVAC systems, control systems, solar photovoltaic power plant, and wind turbine power plant.

CEE 255. Introduction to Sensing Networks for CEE. 3-4 Units.
Introduce the design and implementation of sensor networks for monitoring the built and natural environment. Emphasis on the integration of modern sensor and communication technologies, signal processing and statistical models for network data analysis and interpretation to create practical deployments to enable sustainable systems, in areas such as energy, weather, transportation and buildings. Students will be involved in a practical project that may involve deploying a small sensor system, data models and analysis and signal processing. Limited enrollment.
Same as: CEE 155

CEE 256. Building Systems. 4 Units.
HVAC, lighting, and envelope systems for commercial and institutional buildings, with a focus on energy efficient design. Knowledge and skills required in the development of low-energy buildings that provide high quality environment for occupants.
Same as: CEE 156

CEE 258. Donald R. Watson Seminar in Construction Engineering and Management. 1 Unit.
Presentations from construction industry leaders. Discussions with speakers from various segments of industry regarding career options. Student groups interact with industry representatives after class.

CEE 258B. Donald R. Watson Seminar in Construction Engineering and Management. 1 Unit.
Weekly seminars and field trips focusing on technical aspects of concrete and steel construction. Submission of abstract and paper required.

CEE 259. Managing Construction Innovation - Practicum. 2-4 Units.
CEE 159/259 students join Stanford researchers in developing performance metrics and key performance indicators, which inform the assessment and management of productivity policies, industry initiatives, progressive enterprises, global projects or experimental processes in the construction industry. This project-based practicum builds upon a global network of government agencies, professional institutions and member companies collaborating with the Center for Integrated Facility Engineering (CIFE). Through a series of Global Construction Innovation Case Studies, students will develop applied research skills that are essential for academic research, internships or industry practice, while gaining insights into innovative and industrialized construction practice, such as the industry applications of Building Information Modeling (BIM), Integrated Project Delivery (IPD), Lean Methodology, Prefabricated Finished Volumetric Construction (PPVC), Smart Cities or Virtual Design and Construction (VDC). Note to students: this course may be taken repeat for credit for up to 9 cumulative units.
Same as: CEE 159

CEE 259A. Construction Problems. 1-3 Unit.
Group-selected problems in construction techniques, equipment, or management; preparation of oral and written reports. Guest specialists from the construction industry. See 299 for individual studies. Prerequisites: graduate standing in CEM program and consent of instructor.

CEE 259B. Construction Problems. 1-3 Unit.
Group-selected problems in construction techniques, equipment, or management; preparation of oral and written reports. Guest specialists from the construction industry. See 299 for individual studies. Prerequisites: graduate standing in CEM program and consent of instructor.

CEE 260A. Physical Hydrogeology. 4 Units.
(Formerly ESS 230.) Theory of underground water occurrence and flow, analysis of field data and aquifer tests, geologic groundwater environments, solution of field problems, and groundwater modeling. Introduction to groundwater contaminant transport and unsaturated flow. Lab. Prerequisite: elementary calculus.
Same as: ESS 220

CEE 260C. Contaminant Hydrogeology and Reactive Transport. 3 Units.
Decades of industrial activity have released vast quantities of contaminants to groundwater, threatening water resources, ecosystems and human health. What processes control the fate and transport of contaminants in the subsurface? What remediation strategies are effective and what are the tradeoffs among them? How are these processes represented in models used for regulatory and decision-making purposes? This course will address these and related issues by focusing on the conceptual and quantitative treatment of advective-dispersive transport with reacting solutes, including modern methods of contaminant transport simulation. Some Matlab programming / program modification required. Prerequisite: Physical Hydrogeology ESS 220 / CEE 260A (Gorelick) or equivalent and college-level course work in chemistry.
Same as: ESS 221

CEE 260D. Remote Sensing of Hydrology. 3 Units.
This class discusses the methods available for remote sensing of the components of the terrestrial hydrologic cycle and how to use them. Topics include the hydrologic cycle, relevant sensor types and the electromagnetic spectrum, active/passive microwave remote sensing (snow, soil moisture, canopy water content, rainfall), thermal sensing of evapotranspiration, gravity and hyperspectral methods, as well as an introduction to data assimilation and calibration/validation approaches for hydrologic variables. Pre-requisite: programming experience.
Same as: ESS 224
CEE 261A. The Atmospheric Boundary Layer: Fundamental Physics and Modeling. 3 Units.
An introduction to the Atmospheric Boundary Layer (ABL), including measurements and simulations of ABL flows. Wind and flow, turbulent transport, buoyancy and virtual potential temperature, the diurnal cycle. Derivation of the governing equations, simplifications and assumptions. Turbulence kinetic energy and its budget, ABL stability, the Richardson number and teh Obukhov length. Analysis of boundary layer turbulence. Overview of field and wind tunnel measurement techniques, and of computational models from meso- to micro-scale. A Discussion of micro-scale applications, including pedestrian wind comfort, pollutant dispersion and wind loading, and an introduction to uncertainty quantification for ABL flows. Prerequisites: Knowledge of fluid mechanics.

CEE 261B. Physics of Wind Energy. 3 Units.
Formerly CEE 261. An introduction to the analysis and modeling of wind energy resources and their extraction. Topics include the physical origins of atmospheric winds; vertical profiles of wind speed and turbulence over land and sea; the wind energy spectrum and its modification by natural topography and built environments; theoretical limits on wind energy extraction by wind turbines and wind farms; modeling of wind turbine aerodynamics and wind farm performance. Final project will focus on development of a new wind energy technology concept. Prerequisites: CEE 262A or ME 351A.
Same as: ENERGY 262, ME 262

CEE 261C. Wind Engineering for Sustainable Cities. 3 Units.
An introduction to structural and environmental wind engineering for the design of sustainable buildings and cities, covering the physics and analysis of wind loading, urban flow and dispersion, and natural ventilation. Topics include: the atmospheric boundary layer and design wind speeds; bluff body aerodynamics; calculating design wind loads from building codes, wind tunnel experiments or computational fluid dynamics; analyzing pedestrian wind comfort and pollutant dispersion; and the design and analysis of natural ventilation systems using envelope models, scale modeling, full-scale measurements, and computational fluid dynamics. Measurement and simulation data of the flow on Stanford’s Engineering Quad and in the Y2E2 building will be used throughout the course to illustrate the different concepts and methods.

CEE 261I. Atmosphere, Ocean, and Climate Dynamics: The Atmospheric Circulation. 3 Units.
Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the atmospheric circulation. Topics include the global energy balance, the greenhouse effect, the vertical and meridional structure of the atmosphere, dry and moist convection, the equations of motion for the atmosphere and ocean, including the effects of rotation, and the poleward transport of heat by the large-scale atmospheric circulation and storm systems. Prerequisites: MATH 51 or CME100 and PHYSICS 41.
Same as: CEE 161I, EARTHSYS 146A, ESS 246A

CEE 262A. Hydrodynamics. 3-4 Units.
The flow of incompressible viscous fluid; emphasis is on developing an understanding of fluid dynamics that can be applied to environmental flows. Topics: kinematics of fluid flow; equations of mass and momentum conservation (including density variations); some exact solutions to the Navier-Stokes equations; appropriate analysis of fluid flows including Stokes flows, potential flows, and laminar boundary layers; and an introduction to the effects of rotation and stratification through scaling analysis of fluid flows. Prerequisites: 101B or consent of instructor; and some knowledge of vector calculus and differential equations.
CxEE 263A. Air Pollution Modeling. 3-4 Units.
The numerical modeling of urban, regional, and global air pollution focusing on gas chemistry and radiative transfer. Stratospheric, free-tropospheric, and urban chemistry. Methods for solving stiff systems of chemical ordinary differential, including the multistep implicit-explicit method, Gear's method with sparse-matrix techniques, and the family method. Numerical methods of solving radiative transfer, coagulation, condensation, and chemical equilibrium problems. Project involves developing a basic chemical ordinary differential equation solver. Prerequisite: CS 106A or equivalent.

CxEE 263B. Numerical Weather Prediction. 3-4 Units.
Numerical weather prediction. Continuity equations for air and water vapor, the thermodynamic energy equation, and momentum equations derived for the atmosphere. Numerical methods of solving partial differential equations, including finite-difference, finite-element, semi-Lagrangian, and pseudospectral methods. Time-stepping schemes: the forward-Euler, backward-Euler, Crank-Nicolson, Heun, Matsuno, leapfrog, and Adams-Bashforth schemes. Boundary-layer turbulence parameterizations, soil moisture, and cloud modeling. Project developing a basic weather prediction model. Prerequisite: CS 106A or equivalent.

CxEE 263C. Weather and Storms. 3 Units.
Daily and severe weather and global climate. Topics: structure and composition of the atmosphere, fog and cloud formation, rainfall, local winds, wind energy, global circulation, jet streams, high and low pressure systems, inversions, el Niño, la Niña, atmosphere/ocean interactions, fronts, cyclones, thunderstorms, lightning, tornadoes, hurricanes, pollutant transport, global climate and atmospheric optics. Same as: CEE 63

CxEE 263D. Air Pollution and Global Warming: History, Science, and Solutions. 3 Units.
Survey of Survey of air pollution and global warming and their renewable energy solutions. Topics: evolution of the Earth’s atmosphere, history of discovery of chemicals in the air, bases and particles in urban smog, visibility, indoor air pollution, acid rain, stratospheric and Antarctic ozone loss, the historic climate record, causes and effects of global warming, impacts of energy systems on pollution and climate, renewable energy solutions to air pollution and global warming. UC Reqs: GER: DBNatSci. Same as: CEE 64

CxEE 263G. Energy Policy in California and the West. 1 Unit.
This seminar provides an in-depth analysis of the role of California state agencies and Western energy organizations in driving energy policy development, technology innovation, and market structures, in California, the West and internationally. The course covers three areas: 1) roles and responsibilities of key state agencies and Western energy organizations; 2) current and evolving energy and climate policies; and 3) development of the 21st century electricity system in California and the West. The seminar will also provide students a guideline of what to expect in professional working environment. Prerequisite: consent of instructor, see jennadavis.stanford.edu for application. Same as: POLISCI 73, PUBLPOL 73

CxEE 263S. Atmosphere/Energy Seminar. 1 Unit.
Interdisciplinary seminar with talks by researchers and practitioners in the fields of atmospheric science and renewable energy engineering. Addresses the causes of climate, air pollution, and weather problems and methods of addressing these problems through renewable and efficient energy systems. May be repeated for credit.

CxEE 265A. Sustainable Water Resources Development. 3 Units.
Alternative criteria for judging the sustainability of projects. Application of criteria to evaluate sustainability of water resources projects in several countries. Case studies illustrate the role of political, social, economic, and environmental factors in decision making. Influence of international aid agencies and NGOs on water projects. Evaluation of benefit-cost analysis and environmental impact assessment as techniques for enhancing the sustainability of future projects. Limited enrollment. Prerequisite: graduate standing in Environmental Engineering, or consent of instructor.

CxEE 265C. Water Resources Management. 3 Units.
Optimal equilibrium between water supply and water demand, under specific local and regional physical, environmental, social and economic constraints. Principles in the context of sustainable development, increasing water scarcity in many parts of the world, and hydrologic uncertainty including that associated with climate change. Operations and water quality in reservoirs, river basins, and groundwater systems; non-conventional water sources; demand management options; and the institutional and legal framework. Same as: CEE 165C

CxEE 265D. Water and Sanitation in Developing Countries. 1-3 Unit.
Economic, social, political, and technical aspects of sustainable water supply and sanitation service provision in developing countries. Service pricing, alternative institutional structures including privatization, and the role of consumer demand and community participation in the planning process. Environmental and public health considerations, and strategies for serving low-income households. Limited enrollment. Prerequisite: consent of instructor, see jennadavis.stanford.edu for application.

CxEE 265E. Adaptation to Sea Level Rise and Extreme Weather Events. 3 Units.
Students are introduced to basic aspects of climate change in the context of sea level rise and the intensity and frequency of extreme-weather events. Climate change adaptations are adjustments in behaviors, plans and projects to reduce society’s vulnerability to climate change impacts. Major adaptation approaches relevant to civil and environmental engineers are reviewed. Adaptation measures considered include structural and ecologically-based measures for dealing with sea level rise and storm surges, as well as planned migration and managed retreat (i.e., deliberately altering flood defenses to allow flooding of presently protected areas). Strategies for adaptation to changes in extreme weather events, including floods and droughts, are also considered; examples include disaster response management systems and weather insurance. Illustrations of innovative adaptation measures taken by cities are featured as are techniques associated with climate-smart agriculture. Common barriers to climate change adaptation are also reviewed. Limited enrollment. Admission preference given to students in CCEE graduate programs for Environmental Engineering, EFMH and EES followed by seniors doing the coastal focus area within the CEE Department’s Environmental Systems Engineering major.
CEE 265F. Environmental Governance and Climate Resilience. 3 Units.
Adaptation to climate change will not only require new infrastructure and policies but it will also challenge our local, state and national governments to collaborate across jurisdictional lines in ways that include many different types of private and nonprofit organizations and individual actors. The course explores what it means for communities to be resilient and how they can reach that goal in an equitable and effective way. Using sea level rise in the San Francisco Bay Area as a case study, the course assesses grey and green technologies and a range of planning and policy measures that can be used to enhance climate resilience. The course also examines the obstacles communities face in selecting and implementing adaptation measures (e.g., resource constraints, competing priorities, complex permitting requirements and weak inter-agency coordination). Officials from various Bay Area governmental entities contribute to aspects of the course. Course is intended for seniors and graduate students.
Same as: PUBLPOL 265F

CEE 266A. Watersheds and Wetlands. 4 Units.
Introduction to the occurrence and movement of water in the natural environment and its role in creating and maintaining terrestrial, wetland, and aquatic habitat. Hydrologic processes, including precipitation, evaporation, transpiration, snowmelt, infiltration, subsurface flow, runoff, and streamflow. Rivers and lakes, springs and swamps. Emphasis is on observation and measurement, data analysis, modeling, and prediction. Prerequisite: CEE 101B or CEE 162A or equivalent. (Freyberg).
Same as: CEE 166A

CEE 266B. Floods and Droughts, Dams and Aqueducts. 4 Units.
Sociotechnical systems associated with human use of water as a resource and the hazards posed by too much or too little water. Potable and non-potable water use and conservation. Irrigation, hydroelectric power generation, rural and urban water supply systems, storm water management, flood damage mitigation, and water law and institutions. Emphasis is on engineering design. Prerequisite: 166A or equivalent. (Freyberg).
Same as: CEE 166B

CEE 266C. Dams, Reservoirs, and their Sustainability. 3 Units.
An investigation of dams and reservoirs and their short- and long-term costs, benefits, and impacts. Dam safety, operating rules and reoperation in response to change, fish passage, reservoir sediment management, fish passage and habitat, dam removal. Heavy reliance on case studies, technical literature, and discussion. Enrollment limited. Graduate status or permission of the instructor. Prerequisite: CEE 266A, 266B, or equivalents.

CEE 266E. California’s Water Policy and Management: Toward A Sustainable Future. 1 Unit.
This seminar series focuses on the dramatic changes in recent decades in California water policy and management and how water researchers can help forge modern, collaborative solutions that will allow the state to adapt to an uncertain and challenging future. The seminar will meet six times during the Spring Quarter. The heart of the series will include four seminars with panels of outside experts covering the following topics: 1) The diversification of California’s water supply portfolio; 2) The rise of the coequal goals of ecosystem restoration and water supply reliability; 3) The ongoing tension between collaborative and adversarial decision-making processes; and 4) Implications for water researchers seeking to help define pathways to meaningful solutions. In addition to these four seminar sessions, there will be an introductory California Water 101 session for students and a closing session on what we have learned. Students will be assigned readings and required to develop questions for discussion. Lead instructor for the seminar will be Landreth Visiting Fellow Dr. Timothy Quinn. Dr. Quinn spent more than ten years as the executive director of the Association of California Water Agencies, and more than twenty years as the Deputy General Manager of the Metropolitan Water District of Southern California. Over the course of that career, he was at the center of every major water management issue facing the state of California, including the state’s use of Colorado River water, management of the Bay Delta, and sustainable groundwater management. This class will meet the first five weeks of the quarter. Elements used in grading: Attendance, Class Participation, Written Assignments. Cross-listed with Law 2521.

CEE 267. Applied Data Analysis and Uncertainty Quantification. 3 Units.
Probabilistic and statistical methods with emphasis on basic concepts and tools, illustrated with applications from environmental and water studies. Topics: exploratory data analysis; probability theory; classical statistics; Bayesian statistics; geostatistics; and inverse problems.

CEE 269A. Environmental Engineering Seminar. 1 Unit.
Presentations on current research in environmental engineering by Civil & Environmental Engineering faculty.

CEE 269B. Environmental Engineering Seminar. 1 Unit.
Presentations on current research, practice and thinking in environmental engineering by visiting academics and practitioners.

CEE 269C. Environmental Engineering Seminar. 1 Unit.
Presentations on current research, practice and thinking in environmental engineering by visiting academics and practitioners.

CEE 270. Movement and Fate of Organic Contaminants in Waters. 3 Units.
Transport of chemical constituents in surface and groundwater including advection, dispersion, sorption, interphase mass transfer, and transformation; impacts on water quality. Emphasis is on physicochemical processes and the behavior of hazardous waste contaminants. Prerequisites: undergraduate chemistry and calculus. Recommended: 101B.
CEE 270B. Environmental Organic Reaction Chemistry. 2-3 Units.
With over 70,000 chemicals now in production worldwide, predicting their fate in the environment is a difficult task. The course focuses on developing two key skills. First, students should develop the ability to derive mass balance equations used to quantify the fate of chemicals in the environment. With so many chemicals having been introduced in the past ~60 years, many of the key parameters needed for mass balance models have not been measured experimentally. The class builds on CEE 270, which developed methods of predicting equilibrium partitioning coefficients. For many situations involving reactions of target contaminants, equilibrium is not attained. The course develops methods of predicting the reactivity of chemicals based upon their chemical structures both qualitatively and quantitatively. Natural reaction processes covered include acid-base speciation, nucleophilic substitution, oxidation/reduction reactions, and photochemical reactions. Key treatment ractons (ozone, UV treatment and advanced oxidation) are also covered. Prerequisites: CEE 270, Chem 31B/X.

CEE 270S. Environmental Disasters. 2 Units.
Mining and critical review of scientific literature for environmental impacts, especially chemical contamination caused by natural and anthropogenic disasters. Focus is on the development of research review skills, critical thinking and discussion of findings.

CEE 271A. Physical and Chemical Treatment Processes. 3 Units.
Physical and chemical unit operations for water treatment, emphasizing process combinations for drinking water supply. Application of the principles of chemistry, rate processes, fluid dynamics, and process engineering to define and solve water treatment problems by flocculation, sedimentation, filtration, disinfection, oxidation, aeration, and adsorption. Investigative paper on water supply and treatment. Prerequisites: CEE 101B (or CEE 162A); CEE 270. Recommended: 273.

CEE 271B. Environmental Biotechnology. 4 Units.
Stoichiometry, kinetics, and thermodynamics of microbial processes for the transformation of environmental contaminants. Design of dispersed growth and biofilm-based processes. Applications include treatment of municipal and industrial waste waters, detoxification of hazardous chemicals, and groundwater remediation. Prerequisites: 270; 177 or 274A or equivalents.

CEE 271D. Introduction to Wastewater Treatment Process Modeling. 2 Units.
The course will present a structured protocol for simulator application comprising project definition, data collection and reconciliation, model set-up, calibration and validation, and simulation and result interpretation. This course will include a series of guided simulation exercises evaluating resource consumption (e.g., electrical energy, natural gas, chemicals) and resource recovery (e.g., biogas, struvite, biosolids, recycled water) from a variety of treatment plant configurations. Coursework will consist of guided simulation exercises, an end-of-the-quarter project evaluating an assigned plant configuration, and presenting model results to the class. Enrollment will be limited, with preference to CEE graduate students.

CEE 271G. Environmental & Ecological Economics. 3 Units.
Ideas, tools and policy solutions in environmental and ecological economics covering a wide range of topics: biodiversity and ecosystems management, energy and climate change mitigation, environmental health and environmental justice, new indicators of well-being and sustainability beyond GDP and growth and sustainable urban systems. Same as: CEE 171G

CEE 271M. Transport Phenomena: Momentum, heat and mass transport. 3 Units.
Heat, mass and momentum transfer theory from the viewpoint of basic transport equations. Steady and unsteady state; laminar and turbulent flow; boundary layer theory. Prerequisites: fluid mechanics, ordinary differential equations. Same as: CEE 371M

CEE 272. Coastal Contaminants. 3-4 Units.
Coastal pollution and its effects on ecosystems and human health. The sources, fate, and transport of human pathogens and nutrients. Background on coastal ecosystems and coastal transport phenomena including tides, waves, and cross-shelf transport. Introduction to time series analysis with MATLAB. Undergraduates require consent of instructor.

CEE 272R. Modern Power Systems Engineering. 3 Units.
Focus is on Power Engineering from a systems point of view. Topics covered may include modeling of generation, transmission and distribution systems, load flow analysis, transient and steady-state stability analysis. Special emphasis given to modern market operations and dispatch, modeling intermittent controllable power sources, storage technologies, mechanisms for demand response, sensing the grid and the role of market mechanisms for deep integration. Course content may vary year to year.

CEE 272T. SmartGrids and Advanced Power Systems Seminar. 1-2 Unit.
A series of seminar and lectures focused on power engineering. Renowned researchers from universities and national labs will deliver bi-weekly seminars on the state of the art of power system engineering. Seminar topics may include: power system analysis and simulation, control and stability, new market mechanisms, computation challenges and solutions, detection and estimation, and the role of communications in the grid. The instructors will cover relevant background materials in the in-between weeks. The seminars are planned to continue throughout the next academic year, so the course may be repeated for credit. Same as: EE 292T

CEE 273. Aquatic Chemistry. 3 Units.
Chemical principles and their application to the analysis and solution of problems in aqueous geochemistry (temperatures near 25°C and atmospheric pressure). Emphasis is on natural water systems and the solution of specific chemical problems in water purification technology and water pollution control. Prerequisites: CHEM 31 and 33, or equivalents.

CEE 273A. Water Chemistry Laboratory. 3 Units.
(Graduate students register for 273A.) Laboratory application of techniques for the analysis of natural and contaminated waters, emphasizing instrumental techniques. Same as: CEE 179A

CEE 273B. The Business of Water. 2 Units.
One of the fastest growing economic sectors is the water field, and private water companies are playing an increasingly important role in improving water management around the world. In some cases, however, the involvement of private companies in the water sector has also proven controversial (e.g., when private companies have taken over public water supply systems in developing countries such as Bolivia). This course will look at established or emerging businesses in the water sector and the legal, economic, and social issues that they generate. These businesses include investor-owned water utilities, water technology companies (e.g., companies investing in new desalination or water recycling technologies), water-right funds (who directly buy and sell water rights), social impact funds, innovative agricultural operations, water concessionaires, and infrastructure construction companies and investors. Each week will focus on a different business and company. Company executives will attend the class session and discuss their business with the class. In most classes, we will examine (1) the viability and efficacy of the company’s business plan, (2) the legal and/or social issues arising from the business’ work, and (3) how the business might contribute to improved water management and policy. Each student will be expected to write (1) two short reflection papers during the course of the quarter on businesses that present to the class, and (2) a 15-page paper at the conclusion of the class on either a water company of the student’s choice or a policy initiative that can improve the role that business plays in improving water management (either in a particular sector or more generally). Elements used in grading: Attendance, Class Participation, Written Assignments, Final Paper.
CEE 273C. Environmental Engineering Applications of Membrane Technology. 3 Units.
Introduction to membrane technology and processes with applications in R&D, water/wastewater treatment, and renewable energy. Membrane separation principles, reverse osmosis, nanofiltration, membrane characterization techniques, mass transport phenomena, fouling processes, rejection of salts and trace organics, brine disposal system design, energy and cost considerations, and pre- and post-treatment procedures. Case studies in environmental sustainability issues related to full scale treatment engineering.

CEE 273F. Urban Water Use Efficiency and Conservation. 2 Units.
Introduction to water reuse, including membrane treatment, groundwater infiltration, artificial turf, and runoff collection and use.

CEE 273S. Electricity Economics. 3 Units.
This course develops a foundation of economic principles for the electric utility on the topics of regulation, planning, and operation. A particular emphasis is given to emerging electricity sector topics such as renewable planning and integration, distributed energy resources, energy storage, and market design. The course uses these economic principles to assess the effects of existing and proposed policy including the potential for value creation and disruption.

Same as: CEE 173S

CEE 274A. Environmental Microbiology I. 3 Units.

Same as: BIO 274A, CHEMENG 174, CHEMENG 274

CEE 274B. Microbial Bioenergy Systems. 3 Units.
Introduction to microbial metabolic pathways and to the pathway logic with a special focus on microbial bioenergy systems. The first part of the course emphasizes the metabolic and biochemical principles of pathways, whereas the second part is more specifically directed toward using this knowledge to understand existing systems and to design innovative microbial bioenergy systems for biofuel, biofinery, and environmental applications. There also is an emphasis on the implications of rerouting of energy and reducing equivalents for the fitness and ecology of the organism. Prerequisites: CHEMENG 174 or 181 and organic chemistry, or equivalents.

Same as: BIO 273B, CHEMENG 456

CEE 274D. Pathogens and Disinfection. 3 Units.
Introduction to epidemiology, major pathogens and infectious diseases, the immune system, movement and survival of pathogens in the environment, transfer of virulence and antibiotic resistance genes, and pathogen control, with an emphasis on public health engineering measures (disinfection). Prerequisite: 274A.

CEE 274P. Environmental Health Microbiology Lab. 3-4 Units.
Microbiology skills including culture-, microscope-, and molecular-based detection techniques. Focus is on standard and EPA-approved methods to enumerate and isolate organisms used to assess risk of enteric illnesses, such as coliforms, enterococci, and coliphage, in drinking and recreational waters including lakes, streams, and coastal waters. Student project to assess the microbial water quality of a natural water. Limited enrollment; priority to CEE graduate students. An application form must be filed and approved before admission to the class.

CEE 274S. Hopkins Microbiology Course. 3-12 Units.
(Formerly GES 274S.) Four-week, intensive. The interplay between molecular, physiological, ecological, evolutionary, and geochemical processes that constitute, cause, and maintain microbial diversity. How to isolate key microorganisms driving marine biological and geochemical diversity, interpret culture-independent molecular characterization of microbial species, and predict causes and consequences. Laboratory component: what constitutes physiological and metabolic microbial diversity; how evolutionary and ecological processes diversify individual cells into physiologically heterogeneous populations; and the principles of interactions between individuals, their population, and other biological entities in a dynamically changing microbial ecosystem. Prerequisites: CEE 274A and CEE 274B, or equivalents.

Same as: BIO 274S, BIOHOPK 274, ESS 253S

CEE 275A. California Coast: Science, Policy, and Law. 3-4 Units.
This interdisciplinary course integrates the legal, scientific, and policy dimensions of how we characterize and manage resource use and allocation along the California coast. We will use this geographic setting as the vehicle for exploring more generally how agencies, legislatures, and courts resolve resource-use conflicts and the role that scientific information and uncertainty play in the process. Our focus will be on the land-sea interface as we explore contemporary coastal land-use and marine resource decision-making, including coastal pollution, public health, ecosystem management; public access, private development; local community and state infrastructure; natural systems and significant threats; resource extraction; and conservation, mitigation and restoration. Students will learn the fundamental physics, chemistry, and biology of the coastal zone, tools for exploring data collected in the coastal ocean, and the institutional framework that shapes public and private decisions affecting coastal resources. There will be 3 to 4 written assignments addressing policy and science issues during the quarter, as well as a take-home final assignment. Special Instructions: In-class work and discussion is often done in interdisciplinary teams of students from the School of Law, the School of Engineering, the School of Humanities and Sciences, and the School of Earth, Energy, and Environmental Sciences. Students are expected to participate in class discussion and field trips. Elements used in grading: Participation, including class session and field trip attendance, writing and quantitative assignments. Cross-listed with Civil & Environmental Engineering (CEE 175A/275A), Earth Systems (EARTHSYS 175/275), and Law (LAW 2510). Open to graduate students and to advanced undergraduates with instructor consent.

Same as: CEE 175A

CEE 275B. Process Design for Environmental Biotechnology. 3 Units.
Use of microbial bioreactors for degradation of contaminants and recovery of clean water, clean energy and/or green materials. Student teams design, operate, and analyze bioreactors and learn to write consulting style reports. Limited enrollment. Prerequisites: 271B.

CEE 275C. Water, Sanitation and Health. 1-4 Unit.
Students acquire basic knowledge to participate in a dialogue on water, sanitation and health issues in developing and developed countries. The focus is on enteric pathogenic pollutants. Material includes: Important pathogens, their modes of transmission and the diseases they cause, their fate and transport in the environment, and the means by which they are measured; statistical methods for processing and interpreting waterborne pollutant concentrations, and interpreting data from epidemiology studies; microbial source tracking; epidemiology and quantitative microbial risk assessment; reduction of pathogens in water and sludge; and non-experimental water, sanitation, and hygiene research. Several laboratory sessions will allow students to measure indicator bacteria and viruses using culture-based techniques and expose students to molecular methods for measuring health-relevant targets in water.
CEE 275K. The Practice of Environmental Consulting. 2 Units.
Class consists of eight interactive two-hour seminars with discussions, and will cover the evolution of the environmental consulting business, strategic choices and alternative business models for private and public firms, a review of the key operational issues in managing firm, organizational strategies, knowledge management and innovation, and ethical issues in providing professional services. Case studies will be used to illustrate key concepts. Selected reading materials drawn from the technical and business literature on the consulting business. Student groups will prepare and present an abbreviated business plan for an environmental based business. Enrollment limited to CEE MS and PHD students.

CEE 275P. Persuasive Communication for Environmental Scientists, Practitioners, and Entrepreneurs. 2 Units.
Achieving environmental goals depends not only on innovative ideas and great science but also persuasive communication. What makes communication persuasive? The ability of the communicator to create value for his or her audience. This course will teach students how to: 1) focus on their audience and 2) create value for their audience using research-proven communication techniques. Students will master these techniques through oral and written exercises so that, after taking this course, they will speak and write more persuasively.

CEE 275S. Environmental Entrepreneurship and Innovation. 3 Units.
Our current infrastructure for provision of critical services-clean water, energy, transportation, environmental protection; requires substantial upgrades. As a complement to the scientific and engineering innovations taking place in the environmental field, this course emphasizes the analysis of economic factors and value propositions that align value chain stakeholder interests.
Same as: CEE 175S

CEE 276. Introduction to Human Exposure Analysis. 3 Units.
(Graduate students register for 276.) Scientific and engineering issues involved in quantifying human exposure to toxic chemicals in the environment. Pollutant behavior, inhalation exposure, dermal exposure, and assessment tools. Overview of the complexities, uncertainties, and physical, chemical, and biological issues relevant to risk assessment. Lab projects. Recommended: MATH 51. Apply at first class for admission.
Same as: CEE 178

CEE 276B. 100% Clean, Renewable Energy and Storage for Everything. 3-4 Units.
This course discusses elements of a transition to 100% clean, renewable energy in the electricity, transportation, heating/cooling, and industrial sectors for towns, cities, states, countries, and companies. It examines wind, solar, geothermal, hydroelectric, tidal, and wave characteristics and resources; electricity, heat, cold and hydrogen storage; transmission and distribution; matching power demand with supply on the grid: efficiency; replacing fossil with electric appliances and machines in the buildings and industry; energy, health, and climate costs and savings; land requirements; feedbacks of renewables to the atmosphere; and 100% clean, renewable energy roadmaps to guide transitions.
Same as: CEE 176B

CEE 276C. Energy Storage Integration - Vehicles, Renewables, and the Grid. 3 Units.
This course will provide in-depth introduction to existing energy storage solutions being used on the electric grid and in vehicles with a primary focus on batteries and electrochemical storage. We will discuss the operating characteristics, cost and efficiency of these technologies and how tradeoff decisions can be made. Special attention will be given to system-level integration of new storage technologies, including chargers, inverters, battery management systems and controls, into the existing vehicle and grid infrastructure. Further investigations include issues relating to integration of electric vehicle charging with demand-side management, scheduled renewable energy absorption and local grid balancing. Class format involves regular guest lectures, required lab participation, and field trips to relevant sites. Enrollment is limited; if you are interested in taking the course, please fill out a brief questionnaire at http://goo.gl/forms/3YfH91Qx0S n Please contact tjtaggart@stanford.edu with any questions regarding the application or course information.
Same as: CEE 176C

CEE 276G. Sustainability Design Thinking. 3 Units.
Application design thinking to make sustainability compelling, impactful and realizable. Analysis of contextual, functional and human-centered design thinking techniques to promote sustainable design of products and environments by holistically considering space, form, environment, energy, economics, and health. Includes Studio project work in prototyping, modeling, testing, and realizing sustainable design ideas.
Same as: CEE 176G

CEE 277A. An Introduction to fuzzy set QCA. 2-3 Units.
This course provides an introduction to the theory and practice of fuzzy set qualitative comparative analysis (fsQCA). It is designed for students with an interest in using fsQCA in their research. We will review the development of this analytical approach and identify the types of research question for which fsQCA is more and less appropriate. Through lectures and exercises that use fsQCA software, students will master key concepts underlying the methodology, including set theory, Boolean algebra, fuzzy versus crisp set analysis, principles of coding causal conditions and outcomes, and interpreting consistency and coverage metrics. There are no pre-requisites for the course; however, enrollment is capped, and permission of the instructor is required to enroll. Please visit http://jennadavis.stanford.edu/courses-taught-jenna-davis to complete an application.

CEE 277B. Advanced Field Methods in Water, Health and Development. 1-10 Unit.
Field methods for assessing household stored water quality, hand contamination, behaviors, and knowledge related to water, sanitation and health. Limited enrollment. Instructor consent required.

CEE 277L. Smart Cities & Communities. 3 Units.
A city is comprised of people and a complex system of systems. Data provides the connective tissue between those systems. Smart cities use information technology (IT) to harness that data for operational efficiency, efficacy of government services, and sustainability. Key enablers covered include: IoT, open data, analytics, cloud and cognitive computing, and systems of engagement. System case studies will include: water, energy, transportation, buildings, food production, urban design, and social services. The evolving relationship between a city and its citizens as well as the risks / challenges of smart cities will also be explored.
Same as: CEE 177L
CEE 277S. Engineering and Sustainable Development. 1-3 Unit.
The second of a two-quarter, project-based course sequence that address cultural, political, organizational, technical and business issues at the heart of implementing sustainable engineering projects in the developing world. Students work in interdisciplinary project teams to tackle real-world design challenges in partnership with social entrepreneurs and/or NGOs. This quarter focuses on implementation, evaluation, and deployment of the designs developed in the winter quarter. Designated a Cardinal Course by the Haas Center for Public Service. Same as: CEE 177S, ENGR 177B, ENGR 277B

CEE 277X. Engineering and Sustainable Development: Toolkit. 1-3 Unit.
The first of a two-quarter, project-based course sequence that address cultural, political, organizational, technical, and business issues at the heart of implementing sustainable engineering projects in the developing world. Students work in interdisciplinary project teams to tackle real-world design challenges in partnership with social entrepreneurs and/or NGOs. While students must have the skills and aptitude necessary to make meaningful contributions to technical product designs, the course is open to all backgrounds and majors. The first quarter focuses on conceptual design, feasibility analysis, and implementation, evaluation, and deployment. Admission is by application. Following successful completion of ENGR 177A/277A, students have the option to enroll in CEE 177B/277B Engineering & Sustainable Development: Implementation. Designated a Cardinal Course by the Haas Center for Public Service. Same as: CEE 177X, ENGR 177A, ENGR 277A

CEE 278A. Air Pollution Fundamentals. 3 Units.
The sources and health effects of gaseous and particulate air pollutants. The influence of meteorology on pollution: temperature profiles, stability classes, inversion layers, turbulence. Atmospheric diffusion equations, downwind dispersion of emissions from point and line sources. Removal of air pollutants via settling, diffusion, coagulation, precipitation, Mechanisms for ozone formation, in the troposphere and in the stratosphere. Effects of airborne particle size and composition on light scattering/absorption, and on visual range. Prerequisites: MATH 51 or equivalent. Recommended: 101B, CHEM 31A, or equivalents. Same as: CEE 178A

CEE 278C. Indoor Air Quality. 2-3 Units.
Factors affecting the levels of air pollutants in the built indoor environment. The influence of ventilation, office equipment, floor coverings, furnishings, cleaning practices, and human activities on air quality including carbon dioxide, VOCs, resuspended dust, and airborne molds and fungi. Limited enrollment, preference to CEE students. Prerequisites: Math 42 or 21 and CEE 70, or equivalents. Same as: CEE 172A

CEE 279F. Frontiers of Anaerobic Treatment. 1 Unit.
This seminar will present the latest findings on the operation and performance of ground-breaking anaerobic treatment processes for domestic wastewater. Specifically, this seminar will examine the performance of the Staged Anaerobic Fluidized-bed Membrane Bioreactor (SAF-MBR) using results from ongoing operations at the Codiga Resource Recovery Center and from previous and parallel research efforts. The seminars will incorporate a description of the fundamentals of anaerobic treatment processes, a discussion of how the SAF-MBR process is different from typical anaerobic processes, and insights from operations along with implications for system design. Course work will include explorations of the risks, benefits, and market potential of this technology. Same as: CEE 179F

CEE 279S. Seminar: Issues in Environmental Science, Technology and Sustainability. 1-2 Unit.
Invited faculty, researchers and professionals share their insights and perspectives on a broad range of environmental and sustainability issues. Students critique seminar presentations and associated readings. Same as: CEE 179S, EARTHSYS 179S, ESS 179S

CEE 280. Advanced Structural Analysis. 3-4 Units.
Theoretical development and computer implementation of direct stiffness method of structural analysis; virtual work principles; computation of element stiffness matrices and load vectors; direct assembly procedures; equation solution techniques. Analysis of two- and three-dimensional truss and frame structures, thermal loads, and substructuring and condensation techniques for large systems. Practical modeling techniques and programming assignments. Introduction to nonlinear analysis concepts. Prerequisites: elementary structural analysis and matrix algebra.

CEE 281. Mechanics and Finite Elements. 3 Units.
Fluid conduction and solid deformation; conservation laws: balance of mass and balance of momentum; generalized Darcy’s law and Hooke’s law in 3D; the use of tensors in mechanics; finite element formulation of boundary-value problems; variational equations and Galerkin approximations; basic shape functions, numerical integration, and assembly operations.

CEE 282. Nonlinear Structural Analysis. 3-4 Units.
Introduction to methods of geometric and material nonlinear analysis, emphasizing modeling approaches for framed structures. Large-displacement analysis, concentrated and distributed plasticity models, and nonlinear solution methods. Applications to frame stability and performance-based seismic design. Assignments emphasize computer implementation and applications. Prerequisites: 280 and an advanced course in structural behavior (e.g., 285A, 285B or equivalent).

CEE 283. Structural Dynamics. 3-4 Units.
Vibrations and dynamic response of simple structures under time dependent loads; dynamic analysis of single and multiple degrees of freedom systems; support motion; response spectra.

CEE 284. Finite Element Methods in Structural Dynamics. 3-4 Units.
Computational methods for structural dynamics analysis of discrete and continuous systems in free and forced vibration; finite element formulation; modal analysis; numerical methods; introduction to nonlinear dynamics; advanced topics. Prerequisites: 280, 283.

CEE 285A. Advanced Structural Concrete Behavior and Design. 3-4 Units.
Behavior and design of reinforced and prestressed concrete for building and bridge design. Topics will include flexural behavior, prestressed concrete design, and two-way slab design & analysis, among others.

CEE 285B. Advanced Structural Steel Behavior and Design. 3-4 Units.
Advanced topics in structural steel design. Topics include composite floor systems; bolted and welded connections; beam-column connections; innovative lateral load resisting systems. As part of this course students design a 15-story steel building. Prerequisite: basic course in structural steel design CEE181 or equivalent.

CEE 287. Earthquake Resistant Design and Construction. 3-4 Units.
Evaluation, design, and construction of structures in seismic regions. Factors influencing earthquake ground motions, design spectra, design of linear and nonlinear single- and multiple-degree-of-freedom-system structures, force-based and displacement-based design methods, capacity design, detailing and construction of steel and reinforced concrete structures, introduction to performance-based design, seismic isolation, and energy dissipation. Prerequisites: 283 and either 285A or 285B.

CEE 288. Introduction to Performance Based Earthquake Engineering. 3-4 Units.
Earthquake phenomena, faulting, ground motion, earthquake hazard formulation, effects of earthquakes on manmade structures, response spectra, Fourier spectra, soil effects on ground motion and structural damage, methods for structural damage evaluation, and formulation of the performance-based earthquake engineering problems. Prerequisites: 203, 283.
CEE 289. Random Vibrations. 3-4 Units.
Introduction to random processes. Correlation and power spectral density functions. Stochastic dynamic analysis of multi-degree-of-freedom structures subjected to stationary and non-stationary random excitations. Crossing rates, first-excursion probability, and distributions of peaks and extremes. Applications in earthquake, wind, and ocean engineering. Prerequisite: 203 or equivalent.

CEE 290. Structural Performance and Failures. 2 Units.
Basic concepts in the definition of satisfactory structural performance; key elements in structural performance; types of failures, ranging from reduced serviceability to total collapse; failure sources and their root cause allocation, emphasizing design/construction process failures; failure prevention mechanisms; illustration with real life examples.

CEE 291. Solid Mechanics. 3 Units.
Vector and tensor algebra; vector and tensor analysis; kinetics, basic physical quantities, global and local balance laws, representative material models of 1D and 3D continua at small strains; thermodynamics of general internal variable formulations of inelasticity; integration algorithms for inelastic 1D and 3D materials; basic solution techniques for boundary value problems in 1D and 3D.

CEE 292. Continuum Mechanics. 3 Units.
Introduction to vectors and tensors; kinematics, deformation, forces, and stress concept of continua; balance principles; aspects of objectivity; hyperelastic materials; thermodynamics of materials; variational principles. Prerequisite: CEE 291 or equivalent.

CEE 293. Foundations and Earth Structures. 3 Units.
Types, characteristics, analysis, and design of shallow and deep foundations; rigid and flexible retaining walls; braced excavations; settlement of footings in sands and clays; slope stability analysis by method of slices including search algorithms for the critical slip surface. Prerequisite: 101C or equivalent.

CEE 294. Computational Poromechanics. 3 Units.
Continuum and finite element formulations of steady-state and transient fluid conduction problems on geomechanics; elliptic, parabolic, and hyperbolic systems; variational inequality and free-boundary problems; three-dimensional consolidation theory; undrained condition, mesh locking, B-bar and strain projection methods; finite element formulations of multiphase dynamic problems. Computing assignments. Prerequisite: CEE 281 or equivalent.

CEE 295. Plasticity Modeling and Computation. 3 Units.
Rate-independent elastoplasticity; classical plasticity models for metals and cohesive-frictional materials; cap plasticity models for porous materials; return-mapping algorithm; shear bands, faults, and other discontinuities; Lagrange multipliers, penalty and augmented Lagrangian methods for frictional contact; multiscale techniques: extended finite element and strong discontinuity methods; fault rupture dynamics with bulk plasticity. Prerequisite: CEE 281 or equivalent.

CEE 297M. Managing Critical Infrastructure. 2 Units.
Safe and effective performance of infrastructure systems is critical to our economy, quality of life and safety. This course will present topics associated with risk analysis and management of critical civil infrastructure systems, tolerable risk and community resilience. Methods of risk analysis including systems analysis, reliability analysis, expert elicitation and systems analysis for spatially distributed infrastructure systems will be presented. Aspects of seismic and flood risk analysis will also be discussed. Case histories and lessons learned from Hurricane Katrina, Tohoku earthquake, among others will be presented. The evolution of change in the risk management of civil infrastructure systems, how they are analyzed, designed and operated is discussed. Guest speakers. Student presentations. (Prerequisite: CEE 203 or equivalent).

CEE 298. Structural Engineering and Geomechanics Seminar. 1 Unit.
Recommended for all graduate students. Lectures on topics of current interest in professional practice and research.
EEE 316. Sustainable Built Environment Research. 3 Units.
Intended for early stage Ph.D. students in Sustainable Design and Construction (SDC). Covers dominant methodological approaches at the intersection of engineering, social science and management. Overviews an array of methods available for research, focusing on methods commonly used in SDC. Publications using various methods will be analyzed, and journal review processes will be discussed. Major deliverable is research proposal using one or more of the methods discussed. Students will gain familiarity with the array of methods available for SDC research, know how to apply the methods in their own research area, and receive guidance on publishing their research in scientific journals.

EEE 319. Accessing Architecture Through Drawing. 5 Units.
Preference to sophomores. Drawing architecture provides a deeper understanding of the intricacies and subtleties that characterize contemporary buildings. How to dissect buildings and appreciate the formal elements of a building, including scale, shape, proportion, colors and materials, and the problem solving reflected in the design. Students construct conventional architectural drawings, such as plans, elevations, and perspectives. Limited enrollment.

EEE 320. Integrated Facility Engineering. 1 Unit.
Individual and group presentations on goals, research, and state-of-practice of virtual design and construction in support of integrated facility engineering, including objectives for the application and further development of virtual design and construction technologies. May be repeated for credit.

EEE 322. Data Analytics for Urban Systems. 3 Units.
TBA.

EEE 323A. Infrastructure Finance and Governance. 1 Unit.
Presentation and discussion of early stage or more mature research on a variety of topics related to financing, governance and sustainability of civil infrastructure projects by researchers associated with the Global Projects Center and visiting speakers. To obtain one unit of credit, students must attend and participate in all seminars, with up to two excused absences. Seminar meets weekly during Autumn, Winter and Spring Quarters.

EEE 323B. Infrastructure Finance and Governance. 1 Unit.
Presentation and discussion of early stage or more mature research on a variety of topics related to financing, governance and sustainability of civil infrastructure projects by researchers associated with the Global Projects Center and visiting speakers. To obtain one unit of credit, students must attend and participate in all seminars, with up to two excused absences. Seminar meets weekly during Autumn, Winter, and Spring quarters.

EEE 323C. Infrastructure Finance and Governance. 1 Unit.
Presentation and discussion of early stage or more mature research on a variety of topics related to financing, governance and sustainability of civil infrastructure projects by researchers associated with the Global Projects Center and visiting speakers. To obtain one unit of credit, students must attend and participate in all seminars, with up to two excused absences. Seminar meets weekly during Autumn, Winter and Spring Quarters.

EEE 324. Industrialized Construction. 1-2 Unit.
The course will present driving forces, comprehensive concepts, technologies, and managerial aspects of Industrialized Construction. Further a series of case studies of successful and failed industry implementations in Sweden, North America and Japan will be presented, showcasing process and technology platforms; use of renewable resources and other sustainable design and construction practices. The contrast between industrialized construction practices in Sweden, the U.S. and other countries is highlighted. Project-orientated vs. product-oriented approaches are essential, along with business models and strategies for industrialized construction companies and their opportunities for innovations. The course includes lectures, case studies, and course group-project assignments with leading companies in the industry. Visiting lecturer Dr Jerker Lessing, one of Sweden’s leading experts on industrialized construction with more than 15 years of experience in this field, is giving this course. This is a unique opportunity to learn about this comprehensive, emerging construction concept. Dr Lessing’s research at Lund University has pioneered the area of industrialized construction and established models and strategic perspectives that are widely adopted throughout academia and industry. Dr Lessing has published articles and books and he frequently lectures on the topic in Sweden and internationally. He is the Director and General manager of Research and Development at BoKloK, an industrialized house-building company which is a joint venture of the construction company SKANSKA and furniture giant IKEA. The class will be taught as a condensed two week course. Readings and discussions will be organized in the weeks before the lecture component of the class, a group project after. During weeks 1-5, class will not meet regularly and only meet a few times for reading discussions and guest speakers. When they occur, these meetings will be held either Tuesday or Thursday 8-9am in Y2E2 292A. A detailed class schedule will be available before the start of the quarter.

Notes:
Eligible for SDC Building & Infrastructure Development concentration area requirement.
Number of students limited to 20; prerequisites: CEE100 or equivalent.
Please direct questions to Jerker.lessing@boklok.se.

EEE 325. CapaCity Design Studio. 5 Units.
Silicon Valley’s rapid expansion has created explosive urban development in a fragile and under-prepared natural context. Delicate coastal ecology and rapid urbanization (expanding technology headquarters, new residential housing, parking, services, etc.) are competing for space. The same land also serves the regional functions of transport, open space, recreation, water supply, flood protection and wastewater treatment. Compounding the problems between these competing factors are global climate change instabilities increasing the certainty of catastrophic flooding, infrastructure collapse, and other urban resilience challenges.

Students will be immersed in a process that allows them to understand and spatially identify these risks, develop a vocabulary and an understanding of innovative tools to respond to them, and then work with expert practitioners to create unique design responses. Students will be provided with urban design frameworks (for planning, site development, and conservation) combined with advanced sustainable design concepts (such as resource co-optimization, adaptable infrastructure platforms, and high performance urban ecology) by working with expert lecturers and in small groups. Students will ultimately develop a series of visual and technical presentations to propose a final thesis for a local intervention that could be replicated in other coastal contexts globally.

This course has been designed to develop student learning through a project-based format. Students will be organized into design teams of 3 or 4 and will have the semester to collaborate with partners on an interdisciplinary proposal including policy and design recommendations.
CEE 326. Autonomous Vehicles Studio. 2-3 Units.
Autonomous vehicles have been a fast-growing area of interest for research, development, and commercialization. This interdisciplinary research-based class explores the design and development of autonomous vehicles. Research teams will study the interaction of the human driver and autonomous driving system, particularly in dangerous situations of autonomous systems failures. Collaborate with national and international experts. Independent and team projects will contribute to ongoing research. May be repeated for credit.

CEE 328A. Multidisciplinary Design and Simulation of Building Envelopes. 3 Units.
Curtain walls are a manufactured product ubiquitous in the world of architecture and engineering that must meet structural, thermal, acoustic, environmental, and economic performance requirements. This course focuses on design strategies for building envelopes and explores new design approaches including parametric 3D modeling, simulation, and Multidisciplinary Design Optimization (MDO) methods that leverage computation to augment human abilities to identify novel, high performing solutions. Prerequisite: CEE 220A or equivalent. Limited to 16 students.

CEE 329. Artificial Intelligence Applications in the AEC Industry. 2 Units.
Through weekly lectures given by prominent researchers, practicing professionals, and entrepreneurs, this class will examine important industry problems and critically assess corresponding AI directions in both academia and industry. Students will gain an understanding of how AI can be used to provide solutions in the architecture, engineering, and construction industry and assess the technology, feasibility, and corresponding implementation effort. Students are expected to participate actively in the lectures and discussions, submit triweekly reflection writings, and present their own evaluation of existing solutions. Enrollment limited to 12 students.

CEE 329S. Seminar on Artificial Intelligence Applications in the AEC Industry. 1 Unit.
Through weekly lectures given by prominent researchers, practicing professionals, and entrepreneurs, this class will examine important industry problems and critically assess corresponding AI directions in both academia and industry. Students will gain an understanding of how AI can be used to provide solutions in the architecture, engineering, and construction industry and assess the technology, feasibility, and corresponding implementation effort. Students are expected to actively prepare for and participate in all lectures and corresponding discussions.

CEE 32A. Psychology of Architecture. 3 Units.
This course argues that architecture often neglects the interdisciplinary investigation of our internal psychological experience and the way it impacts our creation of space. How does our inner life influence external design? How are we impacted emotionally, physically, psychologically by the spaces we inhabit day to day? How might we intentionally imbue personal and public spaces with specific emotions? This seminar serves as a call to action for students interested in approaching architecture with a holistic understanding of the emotional impact of space. Sample topics addressed will include: conscious vs. unconscious design; the ego of architecture; psycho-spatial perspectives; ideas of home; integral/holistic architecture; phenomenology of inner and outer spaces; exploring archetypal architecture; and translating emotion through environment.

CEE 32B. Design Theory. 4 Units.
This seminar focuses on the key themes, histories, and methods of architectural theory – a form of architectural practice that establishes the aims and philosophies of architecture. Architectural theory is primarily written, but it also incorporates drawing, photography, film, and other media. One of the distinctive features of modern and contemporary architecture is its pronounced use of theory to articulate its aims. One might argue that modern architecture is modern because of its incorporation of theory. This course focuses on those early-modern, modern, and late-modern writings that have been and remain entangled with contemporary architectural thought and design practice.

CEE 32D. Construction: The Writing of Architecture. 4 Units.
This seminar focuses on the construction of architectural writing. The class will analyze this idea through four topics: formal analysis, manifesto, translation, and preservation. The seminar is divided into two-week modules with each of these four concepts functioning as organizing principles. The first week of each module will involve familiarizing the seminar with both the terms and rhetorical tactics of the given theme by reading and analyzing specific texts and completing a short written analysis (1-2 pages). The second week will expand upon this foundation and involve further analysis in addition to each student writing a short paper (3-4 pages) drawing on the examples discussed and their own experiences in the discipline. The goal of the seminar is for each student to be able to analyze how an architectural writing is constructed and to develop his/her skills in the construction of his/her own writing.

CEE 32F. Light, Color, and Space. 3 Units.
This course explores color and light as a medium for spatial perception. Through the introduction of color theory, color mixing, and light analyses, students will learn to see and use light and color fields as a way to shape experience. We will examine the work of a range of architects and artist who use light and color to expand the field of perception (i.e. Rothko, Turrell, Eliasson, Holl, Aalto).

CEE 32G. Architecture Since 1900. 4 Units.
Architecture since 1900 is an introduction to the history of architecture since 1900 and how it has shaped and been shaped by its cultural contexts. The class also investigates the essential relationship between built form and theory during this period.

CEE 32H. Responsive Structures. 3 Units.
This Design Build seminar investigates the use of metal as a structural, spatial and organizational medium. We will examine the physical properties of post-formable plywood, and develop a structural system and design which respond to site and programmatic conditions. The process includes model building, prototyping, development of joinery, and culminates in the full scale installation of the designed structure on campus. This course may be repeated for credit (up to three times). Class meeting days/times are as follows: April 14, 9a-5p; April 28, 10a-5p; May 3, 7-9p; May 19, 10a-6:30p; May 20, 10a-6:30p.

CEE 32R. American Architecture. 4 Units.
A historically based understanding of what defines American architecture. What makes American architecture American, beginning with indigenous structures of pre-Columbian America. Materials, structure, and form in the changing American context. How these ideas are being transformed in today’s globalized world.

Same as: AMSTUD 143A, ARTHIST 143A, ARTHIST 343A
CEE 32S. The Situated Workplace and Public Life. 4 Units.
The modern workplace has undergone fundamental change and continues to evolve. The context of work in many industries is today being shaped substantially by changing workforce demographics, the pervasiveness of mobile and embedded information technologies, hyper-connected work models on a global scale, evolving notions of health and well being, etc. Our public realm is changing too. People are moving to cities in greater numbers than ever before posing both challenges and opportunities related to new levels of density, sustainable resource management, resilient infrastructures, as well as new forms of civic engagement at neighborhood levels, to name but a few. These changes at an urban scale impact how and where public life happens and how it interacts with new modalities at work. This course will combine research, conceptual explorations, studio design work, seminars and guest lectures to explore the impact of the changing workplace on the morphology of the city by examining these bi-coastal seats of innovation. As the creative workplace continues to evolve, how will it engage the public realm within both well-established urban frameworks such as San Francisco and Boston, and emerging suburban contexts, such as Silicon Valley? The course will join graduate students from the Northeastern University School of Architecture with students from the Stanford University Architectural Design program. Students will reside primarily at their prospective universities and will travel selectively for site research, team charrettes and project reviews. Project sites on both coasts will be utilized for research and studio work. This is an opportunity for students from two top universities, both situated in the epicenters of workplace change, to explore and conduct valuable research on an issue that is changing their urban environments.

CEE 32T. Making and Remaking the Architect: Edward Durell Stone and Stanford. 4 Units.
How does an architect establish a career? How is an architect remembered? What makes a building significant and how should it be preserved, if at all? Fundamental questions about the practice and production of architecture will be examined in this seminar that focuses on the work of Edward Durell Stone (1902-78) and specifically on his work at Stanford and in Palo Alto. By 1955, Stone was so well established that he founded an office in Palo Alto to design the Stanford Medical Center (currently slated for destruction) and several other significant local public buildings, such as the Palo Alto Civic Center. Through site visits to his buildings, research in the Stanford archives, and interviews with architects who worked in his office (among other strategies), students will question how architecture produced in the immediate post-WWII period is thought about historically and how and when it should be preserved.

CEE 32U. California Modernism: The Web of Apprenticeship. 4 Units.
This course will study at the development of Modernism in pre and post World War II California. The class will investigate responses to climatic, technological, and cultural changes that were specific to the state but have now become an idealized tread. We will look at architects and landscape architects who apprenticed with significant design leaders and track how their involvement and explore resulted in changes in building technologies, and influenced the next generation of design thinking and experimentation. The investigations will occur through research, drawings and models, as well as site visits.

CEE 32V. Architectural Design Lecture Series Course. 1 Unit.
This seminar is a companion to the Spring Architecture and Landscape Architecture Lecture Series. Students will converse with lecturers before the lectures, attend the lecture, and prepare short documents (written, graphic, exploratory) for two of the lectures. The four course meeting dates will correspond with the lecture dates TBD. The meeting times are 4:30 PM - 5:30 PM for the seminar and 6:30 - 7:45 for the lecture.

CEE 32W. Making Meaning: A Purposeful Life in Design. 3 Units.
As designers, how do we lead a life with meaning? What is a fulfilling life in design and how do we develop personal and professional practices that support this aim? This experiential course will explore how to nourish a purposeful life amidst a culture that can value productivity over presence in the field, identifying "busyness" as a marker of personal worth. How do we bring depth to not only the design process but our individual and collective lives as well? Investigations will include: exploring personal passions, discovering meaningful work in design, understanding work/life/play balance, practicing self-reflection, integrating wellness, cultivating community, and practicing design with integrity. Our time in class will be enjoyed sharing meals, discourse, play, and reflections with both the class cohort and designers that lead lives or purpose and meaning.

CEE 32X. Modern and Contemporary World Architecture: A Cultural History in Twenty Five Buildings. 4 Units.
This survey course is a guided tour of twenty-five case studies from the last hundred years; interrogates how architecture responds to the aesthetic, technological, political, and cultural issues of the societies they belong to, all over the world.

Same as: ARTHIST 141

CEE 32Y. Architecture & Gender. 4 Units.
This advanced seminar introduces students to the seemingly inconspicuous relation between architecture and gender. The course studies how modern societies create easily, controlled docile spaces, thus pursuing the absent bodies of its members - be it through symbolic or material means. This troubled history of the powers of architecture to neglect sexuality and impose strict gender roles is analyzed in class discussions through recent feminist and queer theoretical approaches and tested on case studies.

Same as: ARTHIST 248A

CEE 33A. Michelangelo Architect. 5 Units.
The architecture of Michelangelo Buonarroti (1475-1564), "Father and Master of all the Arts," redefined the possibilities of architectural expression for generations. This course considers his civic, ecclesiastic, and palatial works. It proceeds from his beginnings in Medicean Florence to his fulfillment in Papal Rome. It examines the anxiety of influence following his death and his enduring legacy in modernism. Topics include: Michelangelo's debt to Classical and Early Renaissance prototypes; his transformation of the canon; the iterative sketch as disegno; architecture and the body; the queering of architectural language; sketch, scale, and materiality; Modernism and Michelangelo. The historiography of Michelangelo has predominantly favored studies in painting and sculpture. Our focus on architecture encourages students to test new ideas and alternative approaches to his work.

Same as: ARTHIST 416A, ITALIAN 216

CEE 33B. Japanese Modern Architecture. 4 Units.
This seminar will examine Japanese architecture and theory since 1900. Through a combination of case studies, readings, and chronological overview, students will develop an in-depth understanding of the aesthetic, expression of construction, structural dynamics, material choices, and philosophical viewpoints that impact Japanese modern and contemporary architectural design. Through lectures, class discussions, a series of weekly writing assignments, and a longer paper and presentation, students will develop the tools to analyze and understand Japanese design of today.
CEE 33C. Housing Visions. 3 Units.
This course provides an introduction to American Housing practices, spanning from the Industrial Age to the present. Students will examine a range of projects that have aspired to a range of social, economic and/or environmental visions. While learning about housing typologies, students will also evaluate the ethical role that housing plays within society. The course focuses on the tactical potentials of housing, whether it is to provide a strong community, solve crisis situations, integrate social services, or encourage socio-economic mixture. Students will learn housing design principles and organizational strategies, and the impact of design on the urban environment. They will discuss themes of shared spaces and defensible spaces; and how design can accommodate the evolving demographics and culture of this country. For example, how can housing design address the changing relationship between living and working? What is the role of housing and ownership in economic mobility? These issues will be discussed within the context of the changing composition of the American population and economy. Pre-NThis course will be primarily discussion-based, using slideshows, readings and field trips as a departure point for student-generated conversations. Each student will be asked to lead a class discussion based on his/her research topic. Students will evaluate projects, identifying which aspects of the initial housing visions were realized, which did not, and why. Eventually, students might identify factors that lead to successful projects, and/or formulate new approaches that can strengthen or redefined the progressive role of housing: one inclusive of the complex social, economic, and ethical dimensions of design. Same as: URBANST 103C

CEE 341. Virtual Design and Construction. 3 Units.
Virtual Design and Construction (VDC) starts by understanding the client’s objectives for building performance and the translation of these objectives into measurable project and production objectives. Based on a culture of proactive and constructive engagement, three mutually supportive strategies are essential to achieve these objectives: (1) the knowledge of the many disciplines contributing to the design and construction of a building, usable, operable, and sustainable building needs to be orchestrated concurrently, (2) the information supporting the project team must be integrated and accessible seamlessly, and (3) the workflow carried out by the project team must enable the creation of integrated knowledge and information and lead to decisions that stick. This course will teach all the essential elements of VDC. This is an online course. Prerequisite: 100 or consent of instructor. Recommended: CEE 240, CEE 241.

CEE 345. Network Analysis for Urban Systems. 3 Units.
The objectives of this course are to: 1) introduce you to the mathematical theory of networks and common metrics of networks; 2) develop an understanding of how to utilize network models to study urban systems; 3) provide an opportunity to apply network models to analyze a real urban system. Students are expected to have a strong background in calculus and linear algebra before taking this course and should be comfortable with the calculation and manipulation of matrices. Experience in a numerical scripting language (preferably Python, R or Matlab) is necessary for the final project. Coursework will consist of graded problem sets pertaining to both theory of networks and applications to urban systems. There will be a final project where students will be required to apply network based methods to the analysis of real data of an urban system. (subject to change).

CEE 350. Engineering Writing, Reviewing and Presentations. 3 Units.
This class will cover key skills for future professors including how to write journal articles suitable for Environmental Science & Technology, 2) how to review articles for such journals, and how to deliver an effective presentation. The class is organized to provide criticism between peers on these topics.

CEE 351. Turbulence Modeling for Environmental Fluid Mechanics. 2-4 Units.
An introduction to turbulence and its modeling, including Reynolds-average and large-eddy simulation models. Derivation of closure approximations and models. Impact of numerical code truncation error on turbulence model value and accuracy. Discussion of typical problems and their applications to turbulent flows in rivers, estuaries, the coastal ocean and the atmospheric boundary layer (e.g., wind turbines and weather models). Prerequisites: knowledge of hydrodynamics or atmosphere dynamics and the basics of transport and mixing in the environment; consent of instructor.

CEE 352. Numerical Modeling of Subsurface Processes. 3-4 Units.
Numerical modeling including: problem formulation, PDEs and weak formulations, and choice of boundary conditions; solution using the finite-element code COMSOL Multiphysics with a variety of solvers and pre- and post-processing of data; and interpretation of results. Problems include: flow in saturated porous media with complex boundaries and heterogeneities; solute transport with common reaction models; effects of heterogeneity on dispersion, dilution, and mixing of solutes; variable-density flow and seawater intrusion; upscaling or coarsening of scale; and biofilm modeling. Enrollment limited to 5.

CEE 352A. Uncertainty Quantification. 3 Units.
Uncertainty is an unavoidable component of engineering practice and decision making. Representing a lack of knowledge, uncertainty stymies our attempts to draw scientific conclusions, and to confidently design engineering solutions. Failing to account for uncertainty can lead to false discoveries, while inaccurate assessment of uncertainties can lead to overbuilt engineering designs. Overcoming these issues requires identifying, quantifying, and managing uncertainties through a combination of technical skills and an appropriate mindset. This class will introduce modern techniques for quantifying and propagating uncertainty and current challenges. Emphasis will be on applying techniques in genuine applications, through assignments, case studies, and student-defined projects. Prerequisite: Basic probability and statistics at the level of CME 106 or equivalent. Same as: ME 470

CEE 352B. Imaging with Incomplete Information. 3-4 Units.
Statistical and computational methods for inferring images from incomplete data. Bayesian inference methods are used to combine data and quantify uncertainty in the estimate. Fast linear algebra tools are used to solve problems with many pixels and many observations. Applications from several fields but mainly in earth sciences. Prerequisites: Linear algebra and probability theory. Same as: CME 262

CEE 361. Turbulence Modeling for Environmental Fluid Mechanics. 2-4 Units.
The effects of density stratification on flows in the natural environment. Basic properties of linear internal waves in layered and continuous stratification. Flows established by internal waves. Internal hydraulics and gravity currents. Turbulence in stratified fluids. Prerequisites: 262A,B, CME 204.

CEE 362. Numerical Modeling of Subsurface Processes. 3-4 Units.
Numerical modeling including: problem formulation, PDEs and weak formulations, and choice of boundary conditions; solution using the finite-element code COMSOL Multiphysics with a variety of solvers and pre- and post-processing of data; and interpretation of results. Problems include: flow in saturated porous media with complex boundaries and heterogeneities; solute transport with common reaction models; effects of heterogeneity on dispersion, dilution, and mixing of solutes; variable-density flow and seawater intrusion; upscaling or coarsening of scale; and biofilm modeling. Enrollment limited to 5.

CEE 362A. Uncertainty Quantification. 3 Units.
Uncertainty is an unavoidable component of engineering practice and decision making. Representing a lack of knowledge, uncertainty stymies our attempts to draw scientific conclusions, and to confidently design engineering solutions. Failing to account for uncertainty can lead to false discoveries, while inaccurate assessment of uncertainties can lead to overbuilt engineering designs. Overcoming these issues requires identifying, quantifying, and managing uncertainties through a combination of technical skills and an appropriate mindset. This class will introduce modern techniques for quantifying and propagating uncertainty and current challenges. Emphasis will be on applying techniques in genuine applications, through assignments, case studies, and student-defined projects. Prerequisite: Basic probability and statistics at the level of CME 106 or equivalent. Same as: ME 470

CEE 362B. Imaging with Incomplete Information. 3-4 Units.
Statistical and computational methods for inferring images from incomplete data. Bayesian inference methods are used to combine data and quantify uncertainty in the estimate. Fast linear algebra tools are used to solve problems with many pixels and many observations. Applications from several fields but mainly in earth sciences. Prerequisites: Linear algebra and probability theory. Same as: CME 262

CEE 363A. Mechanics of Stratified Flows. 3 Units.
The effects of density stratification on flows in the natural environment. Basic properties of linear internal waves in layered and continuous stratification. Flows established by internal waves. Internal hydraulics and gravity currents. Turbulence in stratified fluids. Prerequisites: 262A,B, CME 204.

CEE 363B. Chaos and Turbulence. 3 Units.
An overview of the statistical analysis of unsteady flows, with a focus on chaos and turbulence. Topics will include random variables and statistical analysis; self-similarity, scaling, and symmetries; the turbulent energy cascade and the Kolmogorov similarity hypotheses; intermittency, refined similarity, and multifractal analysis; mixing and transport in chaotic and turbulent flows; and an overview of the effects of additional conservation laws on flow statistics. Prerequisites: CEE 262A or ME 351A, or permission of instructor.
CEE 363C. Ocean and Estuarine Modeling. 3 Units.
Advanced topics in modeling for ocean and estuarine environments, including methods for shallow water; primitive, and nonhydrostatic equations on Cartesian, curvilinear, and unstructured finite-volume grid systems. Topics include accuracy and stability analyses, free-surface methods, nonhydrostatic solvers, turbulence modeling, vertical coordinate systems, and advanced Eulerian and Lagrangian advection techniques. Prerequisites: CEE262A or ME351A, CME 200, 206, or equivalents.

CEE 363F. Oceanic Fluid Dynamics. 3 Units.
Dynamics of rotating stratified fluids with application to oceanic flows. Topics include: inertia-gravity waves; geostrophic and cyclogeostrophic balance; vorticity and potential vorticity dynamics; quasi-geostrophic motions; planetary and topographic Rossby waves; inertial, symmetric, barotropic and baroclinic instability; Ekman layers; and the frictional spin-down of geostrophic flows. Prerequisite: CEE 262A or a graduate class in fluid mechanics.
Same as: ESS 363F

CEE 363G. Field Techniques in Coastal Oceanography. 3 Units.
This course focuses on the design and implementation of coastal oceanographic field studies from implementation through analysis. A wide range of field instrumentation and techniques, including AUVs and scientific diving is covered. Field studies. Data collection and analysis under instructor guidance.

CEE 363H. Topics in Stratified Turbulence. 2 Units.
An exploration of classical and current papers dealing with the behavior of turbulence in stratified environments. This is a seminar-style class where each student will be expected to make presentations and lead discussions during the course of the quarter. Enrollment is limited and is based on the consent of the instructor. Prerequisites -- graduate coursework in turbulence and stratified flows.

CEE 364F. Advanced Topics in Geophysical Fluid Dynamics. 2-3 Units.
A seminar-style class covering the classic papers on the theory of the large-scale ocean circulation. Topics include: wind-driven gyres, mesoscale eddies and geostrophic turbulence, eddy-driven recirculation gyres, homogenization of potential vorticity, the ventilated thermocline, subduction, and the abyssal circulation. Prerequisite: EESS 363F or CEE 363F. Recommended: EESS 246B. Same as: CEE 364F

CEE 365A. Advanced Topics in Environmental Fluid Mechanics and Hydrology. 2-6 Units.
Students must obtain a faculty sponsor.

CEE 365B. Advanced Topics in Environmental Fluid Mechanics and Hydrology. 2-6 Units.
Students must obtain a faculty sponsor.

CEE 365C. Advanced Topics in Environmental Fluid Mechanics and Hydrology. 2-6 Units.
Students must obtain a faculty sponsor.

CEE 365D. Advanced Topics in Environmental Fluid Mechanics and Hydrology. 2-6 Units.
Students must obtain a faculty sponsor.

CEE 370A. Environmental Research. 5-6 Units.
Introductory research experience for first-year Ph.D. students in the Environmental Engineering and Science program. 15-18 hours/week on research over three quarters. 370A requires written literature survey on a research topic; 370B requires oral presentation on experimental techniques and research progress; 370C requires written or oral presentation of preliminary doctoral research proposal. Students must obtain a faculty sponsor.

CEE 370B. Environmental Research. 5-6 Units.
Introductory research experience for first-year Ph.D. students in the Environmental Engineering and Science program. 15-18 hours/week on research over three quarters. 370A requires written literature survey on a research topic; 370B requires oral presentation on experimental techniques and research progress; 370C requires written or oral presentation of preliminary doctoral research proposal. Students must obtain a faculty sponsor.

CEE 370C. Environmental Research. 5-6 Units.
Introductory research experience for first-year Ph.D. students in the Environmental Engineering and Science program. 15-18 hours/week on research over three quarters. 370A requires written literature survey on a research topic; 370B requires oral presentation on experimental techniques and research progress; 370C requires written or oral presentation of preliminary doctoral research proposal. Students must obtain a faculty sponsor.

CEE 370D. Environmental Research. 3-6 Units.
Introductory research experience for first-year Ph.D. students in the Environmental Engineering and Science program. 15-18 hours/week on research over three quarters. 370A requires written literature survey on a research topic; 370B requires oral presentation on experimental techniques and research progress; 370C requires written or oral presentation of preliminary doctoral research proposal. Students must obtain a faculty sponsor.

CEE 371L. Helminthic Disease Monitoring and Control. 5 Units.
Assessment will be based upon weekly written and/or oral reports, with a final written critical review due at the end of the quarter.

CEE 371M. Transport Phenomena: Momentum, heat and mass transport. 3 Units.
Heat, mass and momentum transfer theory from the viewpoint of basic transport equations. Steady and unsteady state; laminar and turbulent flow; boundary layer theory. Prerequisites: fluid mechanics, ordinary differential equations.
Same as: CEE 271M

CEE 374A. Introduction to Physiology of Microbes in Biofilms. 1-6 Unit.
Diversification of biofilm populations, control of gene expression in biofilm environments, and evolution of novel genetic traits in biofilms.

CEE 374B. Introduction to Physiology of Microbes in Biofilms. 1-6 Unit.
Diversification of biofilm populations, control of gene expression in biofilm environments, and evolution of novel genetic traits in biofilms.

CEE 374C. Introduction to Physiology of Microbes in Biofilms. 1-6 Unit.
Diversification of biofilm populations, control of gene expression in biofilm environments, and evolution of novel genetic traits in biofilms.

CEE 374D. Introduction to Physiology of Microbes in Biofilms. 1-6 Unit.
Diversification of biofilm populations, control of gene expression in biofilm environments, and evolution of novel genetic traits in biofilms.

CEE 374M. Advanced Topics in Watershed Systems Modeling. 4 Units.
Basic principles of watershed systems analysis is required for water resources evaluation, watershed-scale water quality issues, and watershed-scale pollutant transport problems. The dynamics of watershed-scale processes and the human impact on natural systems, and for developing remediation strategies are studied, including terrain analysis and surface and subsurface characterization procedures and analysis.

CEE 374S. Advanced Topics in Microbial Pollution. 1-5 Unit.
May be repeated for credit. Prerequisite: consent of instructor.

CEE 374W. Advanced Topics in Water, Health and Development. 1-18 Unit.
Advanced topics in water, health and development. Emphasis on low- and middle-income countries. Class content varies according to interests of students. Instructor consent required.
CEE 374X. Advanced Topics in Multivariate Statistical Analysis. 1-6 Unit.
Analysis of experimental and non-experimental data using multivariate modeling approaches. May be repeated for credit. Permission of instructor required for enrollment.

CEE 374Z. Urban Water Conflicts. 3 Units.
Students in this course will review and discuss current literature on urban water conflicts using a case-study approach. We will consider the technical, economic, social, policy, and law aspects of the conflicts. Each student will take responsibility for leading 1-2 class sessions (depending on the final number of students enrolled in the course), and will write a description of the case study as well as a short proposal describing novel research on urban water conflicts. Course enrollment is capped. Permission to enroll must be obtained from the instructor through an application process.

CEE 377. Research Proposal Writing in Environmental Engineering and Science. 1-3 Unit.
For first- and second-year post-master’s students preparing for thesis defense. Students develop progress reports and agency-style research proposals, and present a proposal in oral form. Prerequisite: consent of thesis adviser.

CEE 378D. Seminar of Statistical Analysis of Multidisciplinary Primary Data. 1-3 Unit.
Practical management and analysis techniques for primary data collected in multidisciplinary projects. Selection of appropriate statistical tests, interpretation of results, and effective communication of findings to lay audiences. Univariate, bivariate and multivariate techniques, including hypothesis testing, nonparametric statistics, regression analysis and matching. Use of SPSS statistical package. Limited enrollment. Prerequisite: consent of instructor.

CEE 379. Introduction to PHD Studies in Civil and Environmental Engineering. 1 Unit.
This seminar course will cover important topics for students considering a PhD in Civil and Environmental Engineering. Sessions will include presentations and discussions on career development, exploring research and adviser options, and the mechanics of PhD studies, including General Qualifying Exam requirements for all CEE PHD Students. In addition, CEE faculty will give presentations on their research. This seminar is required for CEE students considering a PhD or preparing to sit for the General Qualifying Exam in Civil and Environmental Engineering.

CEE 381. Advanced Engineering Informatics. 1-4 Unit.

CEE 385. Performance-Based Earthquake Engineering. 3-4 Units.
Synthesis and application of approaches to performance-based design and assessment that recently have been developed or are under development. Emphasis is on quantitative decision making based on life-cycle considerations that incorporate direct losses, downtime losses, and collapse, and the associated uncertainties. Hazard analysis, response simulation, damage and loss estimation, collapse prediction. Case studies. Prerequisites: 282, 287, and 288.

CEE 398. Report on Civil Engineering Training. 1 Unit.
On-the-job training under the guidance of experienced, on-site supervisors; meets the requirements for Curricular Practical Training for students on F-1 visas. Students submit a concise report detailing work activities, problems worked on, and key results. Prerequisite: qualified offer of employment and consent of adviser as per I-Center procedures.

CEE 399. Advanced Engineering Problems. 1-10 Unit.
Individual graduate work under the direction of a faculty member on a subject of mutual interest. For Engineer Degree students and Pre-quals Doctoral students. Student must have faculty sponsor. May be repeated for credit.

CEE 400. Approaching Palau: Preparation and Research Ideation and Development. 1 Unit.
This class is a seminar designed to prepare students participating in the 2019 Palau Seminar for possible research activities. Enrollment by approval of the instructors.
Same as: ESS 40

CEE 400. Thesis. 1-15 Unit.
For students who have successfully completed the department general qualifying examination. Research and dissertation for the Ph.D. degree. Same as: Ph.D. Degree

CEE 50N. Multi-Disciplinary Perspectives on a Large Urban Estuary: San Francisco Bay. 3 Units.
This course will be focused around San Francisco Bay, the largest estuary on the Pacific coasts of both North and South America as a model ecosystem for understanding the critical importance and complexity of estuaries. Despite its uniquely urban and industrial character, the Bay is of immense ecological value and encompasses over 90% of California’s remaining coastal wetlands. Students will be exposed to the basics of estuarine biogeochemistry, microbiology, ecology, hydrodynamics, pollution, and ecosystem management/ restoration issues through lectures, interactive discussions, and field trips. Knowledge of introductory biology and chemistry is recommended.
Same as: EARTHSYS 49N, ESS 49N

CEE 6. Physics of Cities. 3 Units.
An introduction to the modern study of complex systems with cities as an organizing focus. Topics will include: cities as interacting systems; cities as networks; flows of resources and information through cities; principles of organization, self-organization, and complexity; how the properties of cities scale with size; and human movement patterns. No particular scientific background is required, but comfort with basic mathematics will be assumed. Prerequisites: MATH 19 and 20, or the equivalent.
Same as: URBANST 109

CEE 63. Weather and Storms. 3 Units.
Daily and severe weather and global climate. Topics: structure and composition of the atmosphere, fog and cloud formation, rainfall, local winds, wind energy, global circulation, jet streams, high and low pressure systems, inversions, el Niño, la Niña, atmosphere/ocean interactions, fronts, cyclones, thunderstorms, lightning, tornadoes, hurricanes, pollutant transport, global climate and atmospheric optics. Same as: CEE 263C

CEE 64. Air Pollution and Global Warming: History, Science, and Solutions. 3 Units.
Survey of Survey of air pollution and global warming and their renewable energy solutions. Topics: evolution of the Earth’s atmosphere, history of discovery of chemicals in the air, bases and particles in urban smog, visibility, indoor air pollution, acid rain, stratospheric and Antarctic ozone loss, the historic climate record, causes and effects of global warming, impacts of energy systems on pollution and climate, renewable energy solutions to air pollution and global warming. UC Reqs: GER: DBNATSci. Same as: CEE 263D

CEE 70. Environmental Science and Technology. 3 Units.
Introduction to environmental quality and the technical background necessary for understanding environmental issues, controlling environmental degradation, and preserving air and water quality. Material balance concepts for tracking substances in the environmental and engineering systems. Same as: ENGR 90
CEE 707. Hacking for Urban Resilience: Expecting the Unexpected with a Lean Launchpad Mindset. 3-4 Units.

People, businesses and the built environment constituting major urban centers are fragile by their very nature. Aging infrastructure built on land subject to earthquake, flood and drought risks, neighborhood housing inequality, quality food, water, air, transportation and energy allocated based on ability to pay, jobs restructured by the global economy, and local political forces, cyber risks and data malfeasance creeping into digital lifestyles and urban systems. The cascading risks of failure from urban fragility play out in multiple scenarios, endangering local and regional economic, environmental and social systems. In the heat of urban emergency, rapid problem definition, innovative solution design and prototyping are unleashed and take control of the situational dynamics. Lean startup methodologies that have successfully driven Silicon Valley’s pace of innovation can improve governments’ ability to respond to the same dynamics. In this class student teams will take actual urban resilience problems working with governmental organizations to apply Lean startup principles to discover and validate beneficiary needs and to continually build iterative prototypes to validate the original problem and build solution pathways. Teams take a hands-on approach, and are mentored by close engagement with actual Chief Resilience Officers, emergency responders, business and utility continuity executives, national and international response agencies, technology companies and nonprofits. Team applications required by [______]. Limited enrollment.

CEE 70N. Water, Public Health, and Engineering. 3 Units.
Preference to frosh. Linkages between water, wastewater and public health, with an emphasis on engineering interventions. Topics include the history of water and wastewater infrastructure development in the U.S. and Europe; evolution of epidemiological approaches for water-related health challenges; biological and chemical contaminants in water and wastewater and their management; and current trends and challenges in access to water and sanitation around the world. Identifying ways in which freshwater contributes to human health; exposure routes for water- and sanitation-illness. Classifying illnesses by pathogen type and their geographic distribution. Identifying the health and economic consequences of water- and sanitation-related illnesses; costs and benefits of curative and preventative interventions. Interpreting data related to epidemiological and environmental concepts. No previous experience in engineering is required.

CEE 73. Water: An Introduction. 3 Units.
Lake Tahoe’s waters are so clear you can follow a diver 70 feet below your boat. A Lake Erie summer often means that nearshore waters have a green surface scum obscuring everything below. California, suffering from drought, is seriously considering reclamation and direct potable reuse of sewage – aka toilet to tap. Can we (or should we) do this? Why is Tahoe clear, Erie green? This class introduces students to the fundamental tools and science used to understand and manage both natural and human-engineered water systems. Each student will use these tools to explore a water topic of their choosing.

CEE 801. TGR Project. 0 Units.
Same as: Engineer Degree

CEE 802. TGR Dissertation. 0 Units.
Same as: PhD degree

CEE 80N. Engineering the Built Environment: An Introduction to Structural Engineering. 3 Units.
In this seminar, students will be introduced to the history of modern bridges, buildings and other large-scale structures. Classes will include presentations on transformations in structural design inspired by the development of new materials, increased understanding of hazardous overloads and awareness of environmental impacts. Basic principles of structural engineering and how to calculate material efficiency and structural safety of structural forms will be taught using case studies. The course will include a field trip to a Bay Area large-scale structure, hands-on experience building a tower and computational modeling of bridges, and a paper and presentation on a structure or structural form of interest to the student. The goal of this course is for students to develop an understanding and appreciation of modern structures, influences that have led to new forms, and the impact of structural design on society and the environment. Students from all backgrounds are welcome.

CEE 83. Seismic Design Workshop. 2 Units.
Introduction to seismic design for undergraduate students. Structural design concepts are introduced based on physical and mathematical principles. General overview of mechanics of materials, structural analysis, structural systems and earthquake resistant design. The class is intended to prepare students for the EERI 2018 Seismic Design Competition, where students design, analyze and fabricate a five-feet tall balsa wood structure. Hands-on workshops focus on numerical simulation using commercial software and experimental testing. All majors are welcome. Pre-requisite: Physics 41, recommended: ENGR 14.