BIO HOPKINS MARINE
(BIOHOPK)

BIOHOPK 14. Bio-logging and Bio-telemetry. 3 Units.
Bio-logging is a rapidly growing discipline that includes diverse fields such as consumer electronics, medicine, and marine biology. The use of animal-attached digital tags is a powerful approach to study the movement and ecology of individuals over a wide range of temporal and spatial scales. This course is an introduction to bio-logging methods and analysis. Using whales as a model system, students will learn how use multi-sensor tags to study behavioral biomechanics.

BIOHOPK 140H. Statistical Modeling. 3 Units.
(Graduate students register for 240H.) Introduction to applied statistical modeling in a Bayesian framework. Topics will include probability, regression, model comparison, and hierarchical modeling. We will take a hands-on, computational approach (R, Stan) to gain intuition so that students can later design their own inferential models. Prerequisites for this course include introductory statistics and some calculus or linear algebra, as well as previous exposure to scientific computing. Open to graduate students; undergraduate students may enroll with consent of instructor.
Same as: BIOHOPK 240H

BIOHOPK 142H. Historical Ecology of Marine Invertebrates. 5 Units.
This course is an exploration of the local invertebrate fauna at Hopkins Marine Station, through the lens of a long-term monitoring study initiated by Hewatt in 1931. During week 1, lectures will provide an overview of the major phyla represented on rocky intertidal shores. In the laboratory, students will focus on species identification. These skills will be put to use in week 2, when we will quantify patterns of invertebrate biodiversity along the Hewatt transect. During week 3, students will investigate a relevant taxonomic or quantitative problem. This course will meet 12-5pm, Monday-Friday, January 13-31, 2020. Open to graduate students; undergraduate students may enroll with consent of instructor.
Same as: BIOHOPK 242H

BIOHOPK 143H. Quantitative methods for marine ecology and conservation. 4 Units.
The goal of this course is to learn the foundations of ecological modelling with a specific (but not exclusive) focus on marine conservation and sustainable exploitation of renewable resources. Students will be introduced to a range of methods from basic to advanced to characterize population structure, conduct demographic analyses, estimate extinction risk, identify temporal trends and spatial patterns, quantify the effect of environmental determinants and anthropogenic pressures on the dynamics of marine populations, describe the potential for adaptation to climate change. This course will emphasize learning by doing, and will rely heavily on practical computer laboratories, in R and/or Phyton, based on data from our own research activities or peer reviewed publications. Students with a background knowledge of statistics, programming and calculus will be most welcome.
Same as: BIOHOPK 243H, CEE 164H, CEE 264H, EARTHSYS 143H, EARTHSYS 243H

BIOHOPK 144H. Ocean Life and Ecosystems in Monterey Bay. 2 Units.
Monterey Bay is a jewel in North America’s National Marine Sanctuary system. It supports a diverse marine ecosystem with open sea pelagic animals such as blue whales and white sharks, a large undersea canyon with deep ocean environments close to shore, kelp forests and wind-swept sandy shores. This region of complex oceanography supports a hot spot of rich marine biodiversity. This class will explore the amazing ecosystems and vertebrate animals of the Monterey Bay thru the lens/ interface of animal physiology, biologging and ecology. Lectures will be on local animal athletes and inhabitants including white, salmon and mako sharks, bluefin and albacore tunas, blue whales, orcas, salmon, otters and kelp forest ecology, the remarkable diving physiology of elephant seals and the trans-oceanic flights of albatross. Lecture/ seminar and discussion formats will be used.
Same as: BIOHOPK 244H

BIOHOPK 150H. Ecological Mechanics. 3 Units.
(Graduate students register for 250H.) The principles of life’s physical interactions. We will explore basic physics, fluid mechanics, thermal dynamics, and materials science to see how the principles of these fields can be used to investigate ecology at levels from the individual to the community. Topics include: diffusion, boundary layers, fluid-dynamic forces, locomotion, heat-budget models, fracture mechanics, adhesion, beam theory, the statistics of extremes, and the theory of self-organization. Open to students from all backgrounds. Some familiarity with basic physics and calculus advantageous but not necessary.
Same as: BIOHOPK 250H

BIOHOPK 153H. Current Topics and Concepts in Quantitative Fish Dynamics and Fisheries Management. 1 Unit.
(Graduate students register for 253H) The course will focus on extensive reading of seminal and reference papers published in the literature in the last decade on modeling population biology, community dynamics and fishery management in the marine environment. Basic knowledge of population dynamics is welcome. The goal is to develop an appreciation on both traditional and cutting-edge modeling approaches to study the dynamics and management of marine populations subjected to natural or anthropogenic shocks and pressures.
Same as: BIOHOPK 253H

BIOHOPK 157H. Creative Writing & Science: The Artful Interpreter. 5 Units.
What role does creativity play in the life of a scientist? How has science inspired great literature? How do you write accessibly and expressively about things like whales, DNA or cancer? This course usually begins with a field trip to Hopkins Marine Station where Stanford labs buzz with activity alongside barking seals and crashing waves. While we won’t be able to visit Monterey Bay this quarter, the spirit of interdisciplinary exchange will not be lost, and students will be encouraged to get outside and engage with their local environments. As historian Jill Lepore writes of Rachel Carson: ¿She could not have written Silent Spring if she hadn’t, for decades, scrambled down rocks, rolled up her pant legs, and waded into tide pools, thinking about how one thing can change another...¿N As a small workshop course writing process and the study of literary craft form the foundation of our work together. For inspiration we will read nonfiction by scientists who write for wide audiences and literary giants who draw from science. Students will explore the intersection between creative expression and scientific curiosity, completing three short essays and offering supportive peer feedback throughout the quarter. This course is open to all undergraduates. Note: Students must attend the first class meeting to retain their roster spot.
Same as: BIOHOPK 257H, ENGLISH 157H
BIOHOPK 158H. Science Meets Literature on the Monterey Peninsula. 5 Units.
(Graduate students register for 258H.) This course will consider the remarkable nexus of scientific research and literature that developed on the Monterey Peninsula in the first half of the 20th century and how the two areas of creativity influenced each other. The period of focus begins with the 1932 association of John and Carol Steinbeck, Ed Ricketts, and Joseph Campbell, all of whom were highly influenced by the Carmel poet, Robinson Jeffers. Jeffers ends with the novels Cannery Row (1945) and Sweet Thursday (1954). An indisputable high-tide mark, Sea of Cortez: A Leisurely of Travel and Research (1941) will be considered in detail. Weekend field trips will include intertidal exploration, a tour of the Jeffers Tor House in Carmel, and whale watching on Monterey Bay.
Same as: BIOHOPK 258H, ENGLISH 158H

BIOHOPK 159H. Molecular Ecology Lab. 1 Unit.
Graduate students register for 259H. This course will allow students to learn lab approaches to analyzing DNA to answer questions in parentage, population biology, and species identification. Students will spend 2-3 hours each week in the lab extracting DNA, analyzing sequences, and testing hypotheses. Molecular projects will interface with local research projects and course content.
Same as: BIOHOPK 259H

BIOHOPK 161H. Invertebrate Zoology. 5 Units.
(Graduate students register for 261H.) Survey of invertebrate diversity emphasizing form and function in a phylogenetic framework. Morphological diversity, life histories, physiology, and ecology of the major invertebrate groups, concentrating on local marine forms as examples. Current views on the phylogenetic relationships and evolution of the invertebrates. Lectures, lab, plus field trips.
Same as: BIOHOPK 261H

BIOHOPK 162H. Comparative Animal Physiology. 5 Units.
(Graduate students register for 262H.) How animals work. Topics: physiology of respiration, circulation, energy metabolism, thermal regulation, osmotic regulation, muscle physiology, and locomotion. Evolutionary and ecological physiology. Lectures, lab, and field research. An option to combine the course work with a more intensive research focus, with more units, is available. Prerequisite: Consent of instructor.
Same as: BIOHOPK 262H

BIOHOPK 163H. Oceanic Biology. 4 Units.
(Graduate students register for 263H.) How the physics and chemistry of the oceanic environment affect marine plants and animals. Topics: seawater and ocean circulation, separation of light and nutrients in the two-layered ocean, oceanic food webs and trophic interactions, oceanic environments, biogeography, and global change. Lectures, discussion, and field trips. Satisfies Central Menu Area 4 for Bio majors. Recommended: PHYSICS 21 or 51, CHEM 31, or consent of instructor.
Same as: BIOHOPK 263H

BIOHOPK 173H. Marine Conservation Biology. 4 Units.
(Graduate students register for 273H.) Introduction to the key concepts of ecology and policy relevant to marine conservation issues at the population to ecosystems level. Focus on the origin and maintenance of biodiversity and conservation applications from both the biology and policy perspectives (for example, endangered species, captive breeding, reserve design, habitat fragmentation, ecosystem restoration/rehabilitation). Also includes emerging approaches such as ecosystem based management, ocean planning, and coupled social-ecological systems. The course will include lectures, readings and discussions of primary literature, and attendance at seminars with visiting scholars. Prerequisite: introductory biology; suggested: a policy and/or introductory ecology course.
Same as: BIOHOPK 273H

BIOHOPK 173HA. Marine Conservation Biology - Seminar and Discussion Only. 1-2 Unit.
(Graduate students register for 273HA.) Introduction to the key concepts of ecology and policy relevant to marine conservation issues at the population to ecosystems level. Focus on the origin and maintenance of biodiversity and conservation applications from both the biology and policy perspectives (for example, endangered species, captive breeding, reserve design, habitat fragmentation, ecosystem restoration/rehabilitation). Also includes emerging approaches such as ecosystem based management, ocean planning, and coupled social-ecological systems. The course will include lectures, readings and discussions of primary literature, and attendance at seminars with visiting scholars. Prerequisite: introductory biology; suggested: a policy and/or introductory ecology course.
Students should enroll in this course if they are only joining the seminar and discussion. Students who will engage in the full course should enroll in BIOHOPK 173H/273H.
Same as: BIOHOPK 273HA

BIOHOPK 174H. Experimental Design and Probability. 3 Units.
(Graduate students register for 274H.) Variability is an integral part of biology. Introduction to probability and its use in designing experiments to address biological problems. Focus is on experimental design and the use of linear models in testing hypotheses (e.g., analysis of variance, regression). Students will use R to explore and analyze locally relevant biological datasets. No programming or statistical background is assumed. Prerequisite: Consent of instructor.
Same as: BIOHOPK 274H

BIOHOPK 175H. Marine Science and Conservation in a Changing World. 16 Units.
Graduate students register for 275H. This hands-on, experiential course provides a broad foundation in marine science, and explores emerging opportunities for innovation in the study of life in the sea. Students are resident at Stanfords Hopkins Marine Station in Pacific Grove (90 miles south of main campus) where the diverse organisms and environments of Monterey Bay provide the focus for the course. Class meets daily with lectures, discussions, labs, and field work throughout the day. Three linked concentrations, each 3 weeks long, are taught sequentially to address (1) the extraordinary diversity of marine organisms and habitats, (2) the physiology and behavior of marine animals, and (3) the principles of marine ecology. Connecting these concentrations is a weekly seminar-based discussion of topics in marine conservation. This design permits deep concentration on each subject, and places emphasis on discussion, group dialogue, individual exploration, and experiential learning. In the final week of the quarter, students complete an individual capstone project of their choosing. For the Biology major, this course fulfills the same requirements as BIO 47 and BIO 81. Satisfies WIM in Biology.
Same as: BIOHOPK 275H

BIOHOPK 177H. Dynamics and Management of Marine Populations. 4 Units.
(Graduate students register for 277H.) Course examines the ecological factors and processes that control natural and harvested marine populations. Course emphasizes mathematical models as tools to assess the dynamics of populations and to derive projections of their demographic fate under different management scenarios. Course objectives will be met by a combination of theoretical lectures, assigned readings and class discussions, case study analysis and interactive computer sessions.
Same as: BIOHOPK 277H
BIOHOPK 182H. Stanford at Sea. 16 Units.
(Graduate students register for 323H.) Five weeks of marine science including oceanography, marine physiology, policy, maritime studies, conservation, and nautical science at Hopkins Marine Station, followed by five weeks at sea aboard a sailing research vessel in the Pacific Ocean. Shore component comprised of three multidisciplinary courses meeting daily and continuing aboard ship. Students develop an independent research project plan while ashore, and carry out the research at sea. In collaboration with the Sea Education Association of Woods Hole, MA. Only 6 units may count towards the Biology major. 2020-21 academic year offering of this course is dependent on COVID-19 regulations.
Same as: BIOHOPK 323H, EARTH SYS 323, ESS 323

BIOHOPK 183H. Introduction to Ecology. 4 Units.
The course is designed to provide background on key concepts in ecology, familiarize students with key ecological processes and ecosystems, and the methods used in ecological studies. The course will further build students’ skills in critical scientific thinking, reading the literature, and scientific communication. A major goal of the course is to train students to ask questions in ecology, and to design, conduct and report studies addressing these questions. Thus, emphasis is also placed, in addition to general ecological concepts, on field observations, experimental design, and the analysis, interpretation and presentation of ecological data (through computer laboratories, written assignments and presentations). Written assignments, presentations and discussions are designed to provide experience in organizing and presenting information and to expose students to multiple perspectives on ecological processes and their applications. This course fulfills the same requirement as BIO 81.
Same as: BIOHOPK 81

BIOHOPK 185H. Ecology and Conservation of Kelp Forest Communities. 5 Units.
(Graduate students register for 285H.) Five week course. Daily lectures, labs, and scuba dives focused on scientific diving and quantitative ecological methods in kelp forests. Topics include identification and natural history of resident organisms, ecological processes, and subtidal field techniques. Class projects contribute to long-term monitoring at Hopkins Marine Station. It is recommended (but not required) that students complete the Stanford Scientific Diver Training session, typically offered prior to the start of the course. Prerequisites: consent of instructor; rescue scuba certification and scuba equipment.
Same as: BIOHOPK 285H

BIOHOPK 187H. Sensory Ecology. 4 Units.
(Graduate students register for 287H.) Topics: the ways animals receive, filter, and process information gleaned from the environment, sensory receptor mechanisms, neural processing, specialization to life underwater, communication within and between species, importance of behavior to ecosystem structure and dynamics, impact of acoustic and light pollution on marine animals. Emphasis is on the current scientific literature. The laboratory portion of the class explores sensory mechanisms using neurobiological methods and methods of experimental animal behavior.
Same as: BIOHOPK 287H

BIOHOPK 198H. Directed Instruction or Reading. 1-15 Unit.
May be taken as a prelude to research and may also involve participation in a lab or research group seminar and/or library research. Credit for work arranged with out-of-department instructors restricted to Biology majors and requires department approval. May be repeated for credit. (Staff).

BIOHOPK 199H. Undergraduate Research. 1-15 Unit.
Qualified undergraduates undertake individual work in the fields listed under 300H. Arrangements must be made by consultation or correspondence.

BIOHOPK 234H. Topics in Comparative and Environmental Physiology. 1 Unit.
Course for Hopkins Marine Station Graduate Students ONLY *Offered in-person, on site ONLY* Seminar and discussion focused on current topics and research at the interface of physiology and ecology.

BIOHOPK 240H. Statistical Modeling. 3 Units.
(Graduate students register for 240H.) Introduction to applied statistical modeling in a Bayesian framework. Topics will include probability, regression, model comparison, and hierarchical modeling. We will take a hands-on computational approach (R, Stan) to gain intuition so that students can later design their own inferential models. Prerequisites for this course include introductory statistics and some calculus or linear algebra, as well as previous exposure to scientific computing. Open to graduate students; undergraduate students may enroll with consent of instructor.
Same as: BIOHOPK 140H

BIOHOPK 242H. Historical Ecology of Marine Invertebrates. 5 Units.
This course is an exploration of the local invertebrate fauna at Hopkins Marine Station, through the lens of a long-term monitoring study initiated by Hewatt in 1931. During week 1, lectures will provide an overview of the major phyla represented on rocky intertidal shores. In the laboratory, students will focus on species identification. These skills will be put to use in week 2, when we will quantify patterns of invertebrate biodiversity along the Hewatt transect. During week 3, students will investigate a relevant taxonomic or quantitative problem. This course will meet 12-5pm, Monday-Friday. January 13-31, 2020. Open to graduate students; undergraduate students may enroll with consent of instructor.
Same as: BIOHOPK 142H

BIOHOPK 243H. Quantitative methods for marine ecology and conservation. 4 Units.
The goal of this course is to learn the foundations of ecological modelling with a specific (but not exclusive) focus on marine conservation and sustainable exploitation of renewable resources. Students will be introduced to a range of methods from basic to advanced to characterize population structure, conduct demographic analyses, estimate extinction risk, identify temporal trends and spatial patterns, quantify the effect of environmental determinants and anthropogenic pressures on the dynamics of marine populations, describe the potential for adaptation to climate change. This course will emphasize learning by doing, and will rely heavily on practical computer laboratories, in R and/or Phyton, based on data from our own research activities or peer reviewed publications. Students with a background knowledge of statistics, programming and calculus will be most welcome.
Same as: BIOHOPK 143H, CEE 164H, CEE 264H, EARTH SYS 143H, EARTH SYS 243H

BIOHOPK 244H. Ocean Life and Ecosystems in Monterey Bay. 2 Units.
Monterey Bay is a jewel in North America’s National Marine Sanctuary system. It supports a diverse marine ecosystem with open sea pelagic animals such as blue whales and white sharks, a large undersea canyon with deep ocean environments close to shore, kelp forests and windswept sandy shores. This region of complex oceanography supports a hot spot of rich marine biodiversity. This class will explore the amazing ecosystems and vertebrate animals of the Monterey Bay through the lens/ interface of animal physiology, biologging and ecology. Lectures will be on local animal athletes and inhabitants including white, salmon and mako sharks, bluefin and albacore tunas, blue whales, orcas, salmon, otters and kelp forest ecology, the remarkable diving physiology of elephant seals and the trans-oceanic flights of albatross. Lecture/ seminar and discussion formats will be used.
Same as: BIOHOPK 144H
BIOHOPK 250H. Ecological Mechanics. 3 Units.
(Graduate students register for 250H.) The principles of life's physical interactions. We will explore basic physics. fluid mechanics, thermal dynamics, and materials science to see how the principles of these fields can be used to investigate ecology at levels from the individual to the community. Topics include: diffusion, boundary layers, fluid-dynamic forces, locomotion, heat-budget models, fracture mechanics, adhesion, beam theory, the statistics of extremes, and the theory of self-organization. Open to students from all backgrounds. Some familiarity with basic physics and calculus advantageous but not necessary. Same as: BIOHOPK 150H

BIOHOPK 253H. Current Topics and Concepts in Quantitative Fish Dynamics and Fisheries Management. 1 Unit.
(Graduate students register for 253H) The course will focus on extensive reading of seminal and reference papers published in the literature in the last decade on modeling population biology, community dynamics and fishery management in the marine environment. Basic knowledge of population dynamics is welcome. The goal is to develop an appreciation on both traditional and cutting-edge modeling approaches to study the dynamics and management of marine populations subjected to natural or anthropogenic shocks and pressures. Same as: BIOHOPK 153H

BIOHOPK 257H. Creative Writing & Science: The Artful Interpreter. 5 Units.
What role does creativity play in the life of a scientist? How has science inspired great literature? How do you write accessibly and expressively about things like whales, DNA or cancer? This course usually begins with a field trip to Hopkins Marine Station where Stanford labs buzz with activity alongside barking seals and crashing waves. While we won't be able to visit Monterey Bay this quarter, the spirit of interdisciplinary exchange will not be lost, and students will be encouraged to get outside and engage with their local environments. As historian Jill Lepore writes of Rachel Carson: ¿She could not have written Silent Spring if she hadn’t, for decades, scrambled down rocks, rolled up her pant legs, and waded into tide pools, thinking about how one thing can change another...¿n nAs a small workshop course writing process and the study of literary craft form the foundation of our work together. For inspiration we will read nonfiction by scientists who write for wide audiences and literary giants who draw from science. Students will explore the intersection between creative expression and scientific curiosity, completing three short essays and offering supportive peer feedback throughout the quarter. This course is open to all undergraduates. Note: Students must attend the first class meeting to retain their roster spot. Same as: BIOHOPK 157H, ENGLISH 157H

BIOHOPK 258H. Science Meets Literature on the Monterey Peninsula. 5 Units.
(Graduate students register for 258H.) This course will consider the remarkable nexus of scientific research and literature that developed on the Monterey Peninsula in the first half of the 20th century and how the two areas of creativity influenced each other. The period of focus begins with the 1932 association of John and Carol Steinbeck, Ed Ricketts, and Joseph Campbell, all of whom were highly influenced by the Carmel poet, Robinson Jeffers ¿ and ends with the novels Cannery Row (1945) and Sweet Thursday (1954). An indisputable high-tide mark, Sea of Cortez: Robinson Jeffers ¿ and ends with the novels Cannery Row (1945) and Sweet Thursday (1954). An indisputable high-tide mark, Sea of Cortez: A Leisurely of Travel and Research (1941) will be considered in detail. Weekend field trips will include intertidal exploration, a tour of the Jeffers Tor House in Carmel, and whale watching on Monterey Bay. Same as: BIOHOPK 158H, ENGLISH 158H

BIOHOPK 259H. Molecular Ecology Lab. 1 Unit.
(Graduate students register for 259H.) This course will allow students to learn lab approaches to analyzing DNA to answer questions in parentage, population biology, and species identification. Students will spend 2-3 hours each week in the lab extracting DNA, analyzing sequences, and testing hypotheses. Molecular projects will interface with local research projects and course content. Same as: BIOHOPK 159H

BIOHOPK 261H. Invertebrate Zoology. 5 Units.
(Graduate students register for 261H.) Survey of invertebrate diversity emphasizing form and function in a phylogenetic framework. Morphological diversity, life histories, physiology, and ecology of the major invertebrate groups, concentrating on local marine forms as examples. Current views on the phylogenetic relationships and evolution of the invertebrates. Lectures, lab, plus field trips. Same as: BIOHOPK 161H

BIOHOPK 262H. Comparative Animal Physiology. 5 Units.
(Graduate students register for 262H.) How animals work. Topics: physiology of respiration, circulation, energy metabolism, thermal regulation, osmotic regulation, muscle physiology, and locomotion. Evolutionary and ecological physiology. Lectures, lab, and field research. An option to combine the course work with a more intensive research focus, with more units, is available. Prerequisite: Consent of instructor. Same as: BIOHOPK 162H

BIOHOPK 263H. Oceanic Biology. 4 Units.
(Graduate students register for 263H.) How the physics and chemistry of the oceanic environment affect marine plants and animals. Topics: seawater and ocean circulation, separation of light and nutrients in the two-layered ocean, oceanic food webs and trophic interactions, oceanic environments, biogeography, and global change. Lectures, discussion, and field trips. Satisfies Central Menu Area 4 for Bio majors. Recommended: PHYSICS 21 or 51, CHEM 31, or consent of instructor. Same as: BIOHOPK 163H

BIOHOPK 273H. Marine Conservation Biology. 4 Units.
(Graduate students register for 273H.) Introduction to the key concepts of ecology and policy relevant to marine conservation issues at the population to ecosystems level. Focus on the origin and maintenance of biodiversity and conservation applications from both the biology and policy perspectives (for example, endangered species, captive breeding, reserve design, habitat fragmentation, ecosystem restoration/rehabilitation). Also includes emerging approaches such as ecosystem based management, ocean planning, and coupled social-ecological systems. The course will include lectures, readings and discussions of primary literature, and attendance at seminars with visiting scholars. Prerequisite: introductory biology; suggested: a policy and/or introductory ecology course. Same as: BIOHOPK 173H

BIOHOPK 273HA. Marine Conservation Biology - Seminar and Discussion Only. 1-2 Unit.
(Graduate students register for 273HA.) Introduction to the key concepts of ecology and policy relevant to marine conservation issues at the population to ecosystems level. Focus on the origin and maintenance of biodiversity and conservation applications from both the biology and policy perspectives (for example, endangered species, captive breeding, reserve design, habitat fragmentation, ecosystem restoration/rehabilitation). Also includes emerging approaches such as ecosystem based management, ocean planning, and coupled social-ecological systems. The course will include lectures, readings and discussions of primary literature, and attendance at seminars with visiting scholars. Prerequisite: introductory biology; suggested: a policy and/or introductory ecology course.n Students should enroll in this course if they are only joining the seminar and discussion. Students who will engage in the full course should enroll in BIOHOPK 173H/273H. Same as: BIOHOPK 173HA

Stanford Bulletin 2020-21
BIOHOPK 274. Hopkins Microbiology Course. 3-12 Units.
(Formerly GES 274S.) Four-week, intensive. The interplay between molecular, physiological, ecological, evolutionary, and geochemical processes that constitute, cause, and maintain microbial diversity. How to isolate key microorganisms driving marine biological and geochemical diversity; interpret culture-independent molecular characterization of microbial species, and predict causes and consequences. Laboratory component: what constitutes physiological and metabolic microbial diversity; how evolutionary and ecological processes diversify individual cells into physiologically heterogeneous populations; and the principles of interactions between individuals, their population, and other biological entities in a dynamically changing microbial ecosystem. Prerequisites: CEE 274A and CEE 274B, or equivalents.
Same as: BIO 274S, CEE 274S, ESS 253S

BIOHOPK 274H. Experimental Design and Probability. 3 Units.
(Graduate students register for 274H.) Variability is an integral part of biology. Introduction to probability and its use in designing experiments to address biological problems. Focus is on experimental design and the use of linear models in testing hypotheses (e.g., analysis of variance, regression). Students will use R to explore and analyze locally relevant biological datasets. No programming or statistical background is assumed. Prerequisite: consent of instructor.
Same as: BIOHOPK 174H

BIOHOPK 275H. Marine Science and Conservation in a Changing World. 16 Units.
Graduate students register for 275H. This hands-on, experiential course provides a broad foundation in marine science, and explores emerging opportunities for innovation in the study of life in the sea. Students are resident at Stanford Hopkins Marine Station in Pacific Grove (90 miles south of main campus) where the diverse organisms and environments of Monterey Bay provide the focus for the course. Class meets daily with lectures, discussions, labs, and field work throughout the day. Three linked concentrations; each 3 weeks long; are taught sequentially to address (1) the extraordinary diversity of marine organisms and habitats, (2) the physiology and behavior of marine animals, and (3) the principles of marine ecology. Connecting these concentrations is a weekly seminar-based discussion of topics in marine conservation. This design permits deep concentration on each subject, and places emphasis on discussion, group dialog, individual exploration, and experiential learning. In the final week of the quarter, students complete an individual capstone project of their choosing. For the Biology major, this course fulfills the same requirements as BIO 47 and BIO 81. Satisfies WIM in Biology.
Same as: BIOHOPK 175H

BIOHOPK 276H. Estimates and Errors: The Theory of Scientific Measurement. 3 Units.
Measurement plays a fundamental role in science, but many biologists have no formal training in what it means to measure something. Errors are inevitable in any measurement. Which are inherent, and which can be controlled? How do errors propagate? How can you decide which data to reject? When are uncertainties normal? In this course we will work our way into the theory of measurement, covering some topics that overlap with inferential statistics (but from a new and perhaps more intuitive perspective), and extending beyond those basics to include spectral analysis and the dangers of measurement in the digital realm.

BIOHOPK 277H. Dynamics and Management of Marine Populations. 4 Units.
(Graduate students register for 277H.) Course examines the ecological factors and processes that control natural and harvested marine populations. Course emphasizes mathematical models as tools to assess the dynamics of populations and to derive projections of their demographic fate under different management scenarios. Course objectives will be met by a combination of theoretical lectures, assigned readings and class discussions, case study analysis and interactive computer sessions.
Same as: BIOHOPK 177H

BIOHOPK 285H. Ecology and Conservation of Kelp Forest Communities. 5 Units.
(Graduate students register for 285H.) Five week course. Daily lectures, labs, and scuba dives focused on scientific diving and quantitative ecological methods in kelp forests. Topics include identification and natural history of resident organisms, ecological processes, and subtidal field techniques. Class projects contribute to long-term monitoring at Hopkins Marine Station. It is recommended (but not required) that students complete the Stanford Scientific Diver Training session, typically offered prior to the start of the course. Prerequisites: consent of instructor; rescue scuba certification and scuba equipment.
Same as: BIOHOPK 185H

BIOHOPK 287H. Sensory Ecology. 4 Units.
(Graduate students register for 287H.) Topics: the ways animals receive, filter, and process information gleaned from the environment, sensory receptor mechanisms, neural processing, specialization to life underwater, communication within and between species, importance of behavior to ecosystem structure and dynamics, impact of acoustic and light pollution on marine animals. Emphasis is on the current scientific literature. The laboratory portion of the class explores sensory mechanisms using neurobiological methods and methods of experimental animal behavior.
Same as: BIOHOPK 187H

BIOHOPK 290H. Teaching Practicum in Biology. 1-15 Unit.
Open to upper-division undergraduates and graduate students. Practical supervised teaching experience in a biology or lecture course. Training often includes attending lectures, initiating and planning discussion sections, and assisting in the preparation of course materials. May be repeated for credit. Prerequisite: consent of instructor.

BIOHOPK 291H. Teaching of Stanford at Sea. 10 Units.
Only open to graduate students who are teaching assistants for Stanford at Sea. Provides practical experience in teaching field oceanography and marine biology. Serving as an assistant in a lecture course (five weeks) is coupled with acting as a laboratory teaching assistant on board an oceanographic research vessel during a five-week research cruise with the Stanford at Sea course. Prerequisite: consent of instructor.

BIOHOPK 299H. Advanced Topics in Marine Conservation. 2 Units.
Graduate students only. Topics will change from year to year but will include such topics as sustainable fisheries, protected areas, ocean planning, social-ecological systems, dynamic management, sustainable seafood, and impacts of climate change.

BIOHOPK 300H. Research. 1-15 Unit.
BIOHOPK 315H. Career Development for Graduate Students. 2 Units. The course will cover multiple skills required to succeed in graduate school and beyond, including fund raising, publishing, selecting career options, job application and negotiation, and teaching, through lectures, group discussions, and practical exercises.

BIOHOPK 323H. Stanford at Sea. 16 Units. (Graduate students register for 323H.) Five weeks of marine science including oceanography, marine physiology, policy, maritime studies, conservation, and nautical science at Hopkins Marine Station, followed by five weeks at sea aboard a sailing research vessel in the Pacific Ocean. Shore component comprised of three multidisciplinary courses meeting daily and continuing aboard ship. Students develop an independent research project plan while ashore, and carry out the research at sea. In collaboration with the Sea Education Association of Woods Hole, MA. Only 6 units may count towards the Biology major. 2020-21 academic year offering of this course is dependent on COVID-19 regulations. Same as: BIOHOPK 182H, EARTHSYS 323, ESS 323

BIOHOPK 330H. Scientific Writing. 2 Units. This writer’s seminar will workshop the elements of good scientific writing by focusing on a paper’s Introduction. We will chart the elements of an effective Introduction, designed for different audiences and types of scientific journals. The course will provide participants with the chance to craft an Introduction to a current paper or proposal and have it evaluated in light of the ideal structure we define.

BIOHOPK 350H. Life history variation in the evolution of developmental mechanisms. 1 Unit. We study the development of adult body plans by a strong focus on understanding embryonic development. Most animal developmental models are defined by direct development, where the adult body plan forms directly during embryogenesis. However, in many bilaterian phyla, the embryo gives rise to a larval body plan, that is often characterized by a body plan very distinct from the adults that they give rise to. The adult body plan forms postembryonically, often weeks into larval development. Most broad evolutionary body plan comparative studies compare developmental mechanisms of embryos without considering the mode of development of the animals being compared and how this may affect the analysis. In this course we will explore the diversity of developmental strategies in animal phyla and discuss the importance of integrating a more explicit consideration of life history into broad body plan comparisons across distantly related phyla.

BIOHOPK 355. Coral Reefs of the Western Pacific: Interdisciplinary Perspectives, Emerging Crises, and Solutions. 1 Unit. This new graduate-level course focusses on the complex interplay of biology, physics, chemistry, and human activities that both promotes and limits the development of coral reefs. We will examine the ecology of these biodiverse systems as well as the service they provide in terms of rapid nutrient recycling, coastal protection, and maintenance of large populations of fish. New advances in our understanding of coral reefs will be highlighted, including the role of climate variability and micro- and mesoscale fluid flow in controlling reef growth and persistence, the physiology, genomics, and physics underpinning thermal resilience in corals, contributing and mitigating factors involved in the current decline of coral reefs, ocean acidification, fishing, reef-scale trophic modeling, ecological interactions and trophic cascades, and reefs as part of complex seascapes and linkages with other marine ecosystems. The course will conclude with an analysis of science to policy case studies and future opportunities. The faculty leaders collectively have over 100 years of field experience working in coral reefs of the Pacific and despite our forced online teaching and learning format will endeavor to bring the coral reef field experience to life for this class. Same as: BIO 355, CEE 363I, ESS 355

BIOHOPK 47. Introduction to Research in Ecology and Ecological Physiology. 4 Units. This course is a field-based inquiry into rocky intertidal shores that introduces students to ecology and environmental physiology and the research methods used to study them. Students will learn how to detect patterns quantitatively in nature through appropriate sampling methods & statistical analysis. Following exploration of appropriate background material in class and through exploration of the scientific literature, students will learn how to formulate testable hypotheses regarding the underlying causes of the patterns they discern. A variety of different aspects of ecology and physiology will be investigated cooperatively by the students during the quarter, culminating in development of an individual final paper in the form of a research proposal based on data collected during the course. The course will provide a broad conceptual introduction to the underlying biological principles that influence adaptation to the planet’s dynamic habitats, as well as inquiry-based experience in how to explore and understand complex systems in nature. This course fulfills the same laboratory requirement as BIO 47. Satisfies WIM in Biology.

BIOHOPK 801H. TGR Project. 0 Units.

BIOHOPK 802H. TGR Dissertation. 0 Units.

BIOHOPK 81. Introduction to Ecology. 4 Units. The course is designed to provide background on key concepts in ecology, familiarize students with key ecological processes and ecosystems, and the methods used in ecological studies. The course will further build students’ skills in critical scientific thinking, reading the literature, and scientific communication. A major goal of the course is to train students to ask questions in ecology, and to design, conduct and report studies addressing these questions. Thus, emphasis is also placed, in additional to general ecological concepts, on field observations, experimental design, and the analysis, interpretation and presentation of ecological data (through computer laboratories, written assignments and presentations). Written assignments, presentations and discussions are designed to provide experience in organizing and presenting information and to expose students to multiple perspectives on ecological processes and their applications. This course fulfills the same requirement as BIO 81. Same as: BIOHOPK 183H

BIOHOPK 84. Physiology. 4 Units. This course will examine basic physiological systems of vertebrate and invertebrate animals, including nerve and muscle, heart and circulation, kidney and osmoregulation, metabolism, and thermoregulation. This course fulfills the same requirement as BIO 84.

BIOHOPK 85. Evolution. 4 Units. Principles of micro- and macro-evolution from molecular genetics to the development of biological diversity. Adaptation, divergence and natural selection in the past and in contemporary ecological settings. Evolution of humans and human-caused evolution. Emphasis on major body plans in the sea and ocean examples of major evolutionary processes. This course fulfills the same requirements as BIO 85.