Catalog Navigation

School of Engineering

http://exploredegrees.stanford.edu/schoolofengineering/

...based Physics ( PHYSICS 41 Mechanics and PHYSICS 43...255 , CS 261 , CS 262 , CS 263 , CS...

Chemical Engineering

http://exploredegrees.stanford.edu/schoolofengineering/chemicalengineering/

...physical, mathematical, and engineering sciences. Courses include 25E, 35N, 140/240, 142/242, 162/262...

Computer Science

http://exploredegrees.stanford.edu/schoolofengineering/computerscience/

...Credit. Either of the PHYSICS sequences 61/63...255 , CS 261 , CS 262 , CS 263 , CS...

ENERGY 262. Physics of Wind Energy. 3 Units.

Formerly CEE 261. An introduction to the analysis and modeling of wind energy resources and their extraction. Topics include the physical origins of atmospheric winds; vertical profiles of wind speed and turbulence over land and sea; the wind energy spectrum and its modification by natural topography and built environments; theoretical limits on wind energy extraction by wind turbines and wind farms; modeling of wind turbine aerodynamics and wind farm performance. Final project will focus on development of a new wind energy technology concept. Prerequisites: CEE 262A or ME 351A.
Same as: CEE 261B, ME 262

GEOPHYS 262. Rock Physics. 3 Units.

Properties of and processes in rocks as related to geophysical exploration, crustal studies, and tectonic processes. Emphasis is on wave velocities and attenuation, hydraulic permeability, and electrical resistivity in rocks. Application to in situ problems, using lab data and theoretical results.

ME 262. Physics of Wind Energy. 3 Units.

Formerly CEE 261. An introduction to the analysis and modeling of wind energy resources and their extraction. Topics include the physical origins of atmospheric winds; vertical profiles of wind speed and turbulence over land and sea; the wind energy spectrum and its modification by natural topography and built environments; theoretical limits on wind energy extraction by wind turbines and wind farms; modeling of wind turbine aerodynamics and wind farm performance. Final project will focus on development of a new wind energy technology concept. Prerequisites: CEE 262A or ME 351A.
Same as: CEE 261B, ENERGY 262

PHYSICS 262. General Relativity. 3 Units.

Einstein's General Theory of Relativity is a basis for modern ideas of fundamental physics, including string theory, as well as for studies of cosmology and astrophysics. The course begins with an overview of special relativity, and the description of gravity as arising from curved space. From Riemannian geometry and the geodesic equations, to curvature, the energy-momentum tensor, and the Einstein field equations. Applications of General Relativity: topics may include experimental tests of General Relativity and the weak-field limit, black holes (Schwarzschild, charged Reissner-Nordstrom, and rotating Kerr black holes), gravitational waves (including detection methods), and an introduction to cosmology (including cosmic microwave background radiation, dark energy, and experimental probes). Prerequisite: PHYSICS 121 or equivalent including special relativity.