EARTH SYSTEMS

Mission of the Undergraduate Program in Earth Systems

The Earth Systems Program is an interdisciplinary environmental science major. Students learn about and independently investigate complex environmental problems caused by human activities in conjunction with natural changes in the Earth system. Earth Systems majors become skilled in those areas of science, economics, and policy needed to tackle the world’s most pressing social-environmental problems, becoming part of a generation of scientists, professionals, and citizens who approach and solve problems in a systematic, interdisciplinary way.

For students to be effective contributors to solutions for such problems, their training and understanding must be both broad and deep. To this end, Earth Systems students take fundamental courses in ecology, calculus, chemistry, geology, and physics, as well as economics, policy, and statistics. After completing breadth training, they concentrate on advanced work in one of six focus areas: biology, energy, environmental economics and policy, land systems, sustainable food and agriculture, or oceanography and climate. Tracks are designed to support focus and rigor but include flexibility for specialization. Examples of specialized foci have included but are not limited to environment and human health, sustainable agriculture, energy economics, sustainable development, business and the environment, and marine policy. Along with formal course requirements, Earth Systems students complete a 1-unit (270-hour) internship. The internship provides a hands-on academic experience working on a supervised field, laboratory, government, or private sector project.

The Earth Systems Program provides an advising network that includes faculty, staff, and student peer advisers.

The following is an outline of the sequential topics covered and skills developed in this major.

1. **Fundamentals**: The Earth Systems Program includes courses that describe the natural functioning of the physical and biological components of the Earth and human activities that interact with these components. Training in fundamentals includes introductory course work in geology, biology, chemistry, physics, and economics. Additional training in course work in single and multivariable calculus, linear algebra, and statistics provides students with skills needed for quantifying environmental problems. Training in statistics is specific to the area of focus: geostatistics, biostatistics, econometrics.

2. **System Interactions**: Focus in these courses is on the fundamental interactions among the physical, biological, and human components of the Earth system. Understanding the dynamics between natural variation in and human-imposed influences on the Earth system informs the development of effective solutions to social-environmental challenges.

 a. Earth Systems courses that introduce students to the dynamic and multiple interactions that characterize social-environmental challenges include:

3. **Skills Development**: Students take skills courses that help them to recognize, quantify, describe, communicate, and help solve complex problems that face society. For example, field and laboratory methods can help students to recognize the scope and nature of environmental change. Training in satellite remote sensing and geographic information systems allows students to monitor and analyze large-scale spatial patterns of change. This training is either required or recommended for all tracks.

4. **Communication**: Success in building workable solutions to environmental problems is linked to the ability to effectively communicate ideas, data, and results. Writing intensive courses (WIM) help students to communicate complex concepts to expert and non-expert audiences. Other Earth Systems courses also focus on effective written and oral communication and are recommended. All Stanford students must complete one WIM course in their major. Earth Systems students can fulfill the WIM requirement by successfully completing one of the following courses:

 a. Competence in understanding system-level interactions is critical to development as an Earth Systems thinker, so additional classes that meet this objective are excellent choices as electives.

3. **Track-Specific Requirements**: After completing a core designed to introduce students to different functional components of the Earth system, undergraduate students focus their studies through one of six tracks: Human Environmental Systems (formerly Anthroposphere), Biosphere, Energy, Science and Technology, Oceans and Climate (formerly Oceans), Land Systems, or Sustainable Food and Agriculture.

4. **Skills Development**: Students take skills courses that help them to recognize, quantify, describe, communicate, and help solve complex problems that face society. For example, field and laboratory methods can help students to recognize the scope and nature of environmental change. Training in satellite remote sensing and geographic information systems allows students to monitor and analyze large-scale spatial patterns of change. This training is either required or recommended for all tracks.

5. **Communication**: Success in building workable solutions to environmental problems is linked to the ability to effectively communicate ideas, data, and results. Writing intensive courses (WIM) help students to communicate complex concepts to expert and non-expert audiences. Other Earth Systems courses also focus on effective written and oral communication and are recommended. All Stanford students must complete one WIM course in their major. Earth Systems students can fulfill the WIM requirement by successfully completing one of the following courses:

6. **Finding solutions**: Effective solutions to environmental problems take into consideration natural processes as well as human needs. Earth Systems emphasizes the importance of interdisciplinary analysis and implementation of workable solutions through:

 a. Competence in understanding system-level interactions is critical to development as an Earth Systems thinker, so additional classes that meet this objective are excellent choices as electives.

3. **Track-Specific Requirements**: After completing a core designed to introduce students to different functional components of the Earth system, undergraduate students focus their studies through one of six tracks: Human Environmental Systems (formerly Anthroposphere), Biosphere, Energy, Science and Technology, Oceans and Climate (formerly Oceans), Land Systems, or Sustainable Food and Agriculture.

4. **Skills Development**: Students take skills courses that help them to recognize, quantify, describe, communicate, and help solve complex problems that face society. For example, field and laboratory methods can help students to recognize the scope and nature of environmental change. Training in satellite remote sensing and geographic information systems allows students to monitor and analyze large-scale spatial patterns of change. This training is either required or recommended for all tracks.

5. **Communication**: Success in building workable solutions to environmental problems is linked to the ability to effectively communicate ideas, data, and results. Writing intensive courses (WIM) help students to communicate complex concepts to expert and non-expert audiences. Other Earth Systems courses also focus on effective written and oral communication and are recommended. All Stanford students must complete one WIM course in their major. Earth Systems students can fulfill the WIM requirement by successfully completing one of the following courses:

6. **Finding solutions**: Effective solutions to environmental problems take into consideration natural processes as well as human needs. Earth Systems emphasizes the importance of interdisciplinary analysis and implementation of workable solutions through:

 a. Competence in understanding system-level interactions is critical to development as an Earth Systems thinker, so additional classes that meet this objective are excellent choices as electives.

3. **Track-Specific Requirements**: After completing a core designed to introduce students to different functional components of the Earth system, undergraduate students focus their studies through one of six tracks: Human Environmental Systems (formerly Anthroposphere), Biosphere, Energy, Science and Technology, Oceans and Climate (formerly Oceans), Land Systems, or Sustainable Food and Agriculture.

4. **Skills Development**: Students take skills courses that help them to recognize, quantify, describe, communicate, and help solve complex problems that face society. For example, field and laboratory methods can help students to recognize the scope and nature of environmental change. Training in satellite remote sensing and geographic information systems allows students to monitor and analyze large-scale spatial patterns of change. This training is either required or recommended for all tracks.

5. **Communication**: Success in building workable solutions to environmental problems is linked to the ability to effectively communicate ideas, data, and results. Writing intensive courses (WIM) help students to communicate complex concepts to expert and non-expert audiences. Other Earth Systems courses also focus on effective written and oral communication and are recommended. All Stanford students must complete one WIM course in their major. Earth Systems students can fulfill the WIM requirement by successfully completing one of the following courses:

6. **Finding solutions**: Effective solutions to environmental problems take into consideration natural processes as well as human needs. Earth Systems emphasizes the importance of interdisciplinary analysis and implementation of workable solutions through:

A comprehensive list of environmental courses (p. 12) is available on the "Related Courses" tab. This list as well as advice on courses that focus on problem solving are available in the program office.

Learning Outcomes (Undergraduate)

The program expects majors to be able to demonstrate the following learning outcomes. These learning outcomes serve as benchmarks for evaluating students and the program's undergraduate degree. Students are expected to:

1. demonstrate knowledge of foundational skills and concepts in order to advance the interdisciplinary study of the environment.
2. demonstrate the ability to analyze, integrate and apply relevant science and policy perspectives to social-environmental problems.
3. demonstrate the ability to communicate complex concepts and data relevant to social-environmental problems and questions to expert and non-expert audiences.

Learning Outcomes (Graduate)
The coterminal master’s degree in Earth Systems provides the student with enhanced analytical tools to evaluate the disciplines most closely associated with the student’s focus area. Specialization is gained through course work and independent research work supervised by the master’s faculty adviser.

Bachelor of Science in Earth Systems
The B.S. in Earth Systems (EARTHSYS) requires the completion of courses divided into three categories:
1. Core
2. Foundation and Breadth
3. Track-specific Requirements.

The student must fulfill the internship requirement, participate in the Senior Capstone and Reflection course (EARTHSYS 210A or EARTHSYS 210B), complete the Earth Systems Capstone Project (EARTHSYS 210P)/(or Honors Thesis), and complete the Writing in the Major (WIM) requirement.

Core courses, track courses, and electives must be taken for a letter grade. The WIM course may not also count towards the track or electives, if counted as a WIM.

Required Core Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARTHSYS 10</td>
<td>Introduction to Earth Systems</td>
<td>4</td>
</tr>
<tr>
<td>EARTHSYS 111</td>
<td>Biology and Global Change</td>
<td>4</td>
</tr>
<tr>
<td>EARTHSYS 112</td>
<td>Human Society and Environmental Change</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>EARTHSYS 210A</td>
<td>Senior Capstone and Reflection</td>
<td>3</td>
</tr>
<tr>
<td>or EARTHSYS 210B</td>
<td>Senior Capstone and Reflection</td>
<td>3</td>
</tr>
<tr>
<td>EARTHSYS 210P</td>
<td>Earth Systems Capstone Project (or HONORS THESIS)</td>
<td>2</td>
</tr>
<tr>
<td>EARTHSYS 260</td>
<td>Internship</td>
<td>1</td>
</tr>
<tr>
<td>Select one of the following (WIM):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EARTHSYS 191</td>
<td>Concepts in Environmental Communication</td>
<td>3</td>
</tr>
<tr>
<td>EARTHSYS 177C</td>
<td>Specialized Writing and Reporting: Environmental and Food System Journalism</td>
<td>4-5</td>
</tr>
<tr>
<td>EARTHSYS 149</td>
<td>Wild Writing</td>
<td>3</td>
</tr>
<tr>
<td>BIOHOPK 47</td>
<td>Introduction to Research in Ecology and Ecological Physiology</td>
<td>5</td>
</tr>
</tbody>
</table>

Tracks
See each track’s tab for the required Foundation and Breadth and Track-Specific Courses. All Earth Systems Majors must select a track from one of the following:

Biospheres Track (p. 3)
Explores biological systems and how human activities affect biological, ecological, and biogeochemical cycles. Coursework investigates ecosystems and society, conservation biology, ecology, and biogeochemistry.

Energy, Science and Technology (p. 4)
Investigates renewable and depletable energy resources, technology options for improved efficiency, and policy solutions to energy challenges.

Environmental Geoscience (p. 5)
Understand and articulate the ways in which Earth’s interior and surface operate, and how these systems are connected to one another and inextricably bound to the evolution of life and current human activities. Apply understanding of earth and human systems to develop workable, scientifically based, human-centered solutions to building resilience to natural hazards, and our planet’s most pressing environmental challenges.

Human Environmental Systems (p. 5)
Focuses on human interaction with and impact on the environment. Coursework in environmental policy and economics, sustainable development, natural and human-driven change, and social entrepreneurship.

Land Systems (p. 5)
Examines terrestrial ecology, land use, and land change driven by human activities and addressed by governmental policy. Students develop expertise in a focus area of land, water, or urban planning.

Oceans, Atmosphere, and Climate (p. 8)
Builds understanding of ocean systems through a focus on ocean physics, marine biology and chemistry, and remote sensing. A required and seminal track experience is a quarter away at Hopkins Marine Station, Stanford in Australia, or Stanford@SEA.

Sustainable Food and Agriculture Track (p. 8)
Focuses on local and global food and agricultural systems. Students gain a breadth of knowledge on these issues through study in food and society, climate and agriculture, the science of soils, world food economy, and principles and practices of sustainable agriculture.

Honors Program
The Earth Systems honors program provides students with an opportunity to pursue interdisciplinary research. It consists of a year-long research project that is mentored by one or more Earth Systems-affiliated faculty members, and culminates in a written thesis.

To qualify for the honors program, students must have and maintain a minimum overall GPA of 3.4. Potential honors students should complete the EARTHSYS 111 Biology and Global Change and EARTHSYS 112 Human Society and Environmental Change sequence by the end of the junior year. Qualified students can apply in Spring Quarter of the junior year, or the fourth quarter before graduation (check with program for specific application deadlines) by submitting a detailed research proposal and a brief statement of support from a faculty research adviser. Students who elect to do an honors thesis should begin planning no later than Winter Quarter of the junior year.

A maximum of 9 units is awarded for thesis research through EARTHSYS 199 Honors Program in Earth Systems. Those 9 units may not substitute for any other required parts of the Earth Systems curriculum. All theses are evaluated for acceptance by the thesis faculty adviser, one additional faculty member (who is the second reader), and the Director of Earth Systems. Both the adviser and second reader must be members of the Academic Council. Acceptance into the Honors program is not a guarantee of graduating with the honors designation.

Honors students are required to present their research publicly, preferably through the School of Earth, Energy, and Environmental Sciences’ Annual Thesis Symposium, which highlights undergraduate and graduate research in the school. Faculty advisers are encouraged to
sponsor presentation of student research results at professional society meetings.

More extensive work in mathematics and physics may be valuable for those planning graduate study. Graduate study in ecology and evolutionary biology and in economics requires familiarity with differential equations, linear algebra, and stochastic processes. Graduate study in geology, oceanography, and geophysics may require more physics and chemistry. Students should consult their adviser for recommendations beyond the requirements specified above.

1 The Geological Sciences requirement can be fulfilled by completing GEOLSCI 1, GEOLSCI 4, or EARTHSYS 117. GEOLSCI 1A, 1B, and 1C are no longer offered. If taken in previous years, these will still fulfill the Earth Systems’ Geological Sciences requirement.

Biosphere

Learning Objectives:

1. Articulate the interplay of ecology, evolution, and biogeochemistry and understand their connections to the functioning of ecosystems on multiple spatial and temporal scales.

2. Recognize how human activity alters ecological processes, and how ecological changes can interact with human societies at multiple scales.

3. Apply knowledge of natural sciences and human-mediated environmental change to conservation challenges, while considering implications for environmental justice.

Requirements

All students must complete the Required Core Courses (p. 2) listed under the “Bachelor’s (p. 2)” tab in addition to the required courses listed below.

Additional foundation and breadth courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 81</td>
<td>Introduction to Ecology</td>
<td>4</td>
</tr>
<tr>
<td>BIO 82</td>
<td>Genetics</td>
<td>4</td>
</tr>
<tr>
<td>ECON 1</td>
<td>Principles of Economics</td>
<td>5</td>
</tr>
<tr>
<td>GEOLSCI 1</td>
<td>Introduction to Geology</td>
<td>5</td>
</tr>
<tr>
<td>MATH 19</td>
<td>Calculus</td>
<td>9</td>
</tr>
<tr>
<td>MATH 20</td>
<td>Calculus</td>
<td>9</td>
</tr>
<tr>
<td>MATH 21</td>
<td>Calculus</td>
<td>9</td>
</tr>
<tr>
<td>CHEM 33</td>
<td>Structure and Reactivity of Organic Molecules</td>
<td>5</td>
</tr>
<tr>
<td>PHYSICS 41</td>
<td>Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 45</td>
<td>Light and Heat</td>
<td>4</td>
</tr>
<tr>
<td>GEOPHYS 11</td>
<td>Introduction to the foundations of contemporary geophysics</td>
<td>4</td>
</tr>
<tr>
<td>BIOHOPK 174H</td>
<td>Experimental Design and Probability</td>
<td>3</td>
</tr>
<tr>
<td>ECON 102A</td>
<td>Introduction to Statistical Methods (Postcalculus) for Social Scientists</td>
<td>3</td>
</tr>
<tr>
<td>STATS 101</td>
<td>Data Science</td>
<td>3</td>
</tr>
<tr>
<td>STATS 110</td>
<td>Statistical Methods in Engineering and the Physical Sciences</td>
<td>3</td>
</tr>
<tr>
<td>STATS 116</td>
<td>Theory of Probability</td>
<td>3</td>
</tr>
<tr>
<td>STATS 141</td>
<td>Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>CME 106</td>
<td>Introduction to Probability and Statistics for Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>

Choose two courses from Ecology and Conservation Biology, and one course from each of the remaining sub-categories below, total six required:

Biogeochemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 177</td>
<td>Aquatic Chemistry and Biology</td>
<td>4</td>
</tr>
<tr>
<td>CEE 274A</td>
<td>Environmental Microbiology I</td>
<td>3</td>
</tr>
<tr>
<td>EARTSYS 132</td>
<td>Evolution of Earth Systems</td>
<td>4</td>
</tr>
<tr>
<td>EARTSYS 143</td>
<td>Molecular Geomicrobiology Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>EARTSYS 151</td>
<td>Biological Oceanography</td>
<td>3-4</td>
</tr>
<tr>
<td>EARTSYS 152</td>
<td>Marine Chemistry</td>
<td>3-4</td>
</tr>
<tr>
<td>EARTSYS 155</td>
<td>Science of Soils</td>
<td>3-4</td>
</tr>
<tr>
<td>EARTSYS 158</td>
<td>Geomicrobiology</td>
<td>3</td>
</tr>
</tbody>
</table>

Ecology and Conservation Biology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO 130</td>
<td>The Hidden Kingdom - Evolution, Ecology and Diversity of Fungi</td>
<td>4</td>
</tr>
<tr>
<td>BIO 144</td>
<td>Conservation Biology: A Latin American Perspective</td>
<td>3</td>
</tr>
<tr>
<td>BIOHOPK 172H</td>
<td>Marine Ecology: From Organisms to Ecosystems</td>
<td>5</td>
</tr>
<tr>
<td>BIOHOPK 173H</td>
<td>Marine Conservation Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIOHOPK 177H</td>
<td>Dynamics and Management of Marine Populations</td>
<td>4</td>
</tr>
<tr>
<td>BIOHOPK 185H</td>
<td>Ecology and Conservation of Kelp Forest Communities</td>
<td>5</td>
</tr>
<tr>
<td>EARTSYS 116</td>
<td>Ecology of the Hawaiian Islands</td>
<td>4</td>
</tr>
<tr>
<td>EARTSYS 185</td>
<td>Ecology and Natural History of Jasper Ridge & Biological Preserve</td>
<td>4</td>
</tr>
</tbody>
</table>

Ecology of the Hawaiian Islands

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOLSCI 123</td>
<td>Evolution of Marine Ecosystems</td>
<td>4</td>
</tr>
<tr>
<td>OSPAUSTL 10</td>
<td>Coral Reef Ecosystems</td>
<td>3</td>
</tr>
<tr>
<td>OSPAUSTL 30</td>
<td>Coastal Forest Ecosystems</td>
<td>3</td>
</tr>
<tr>
<td>OSPSANTG 58</td>
<td>Living Chile: A Land of Extremes</td>
<td>5</td>
</tr>
<tr>
<td>OSPSANTG 85</td>
<td>(OSPSANTG 85)</td>
<td>3</td>
</tr>
</tbody>
</table>

Ecosystems and Society

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTHRO 118</td>
<td>Heritage, Environment, and Sovereignty in Hawaii</td>
<td>4</td>
</tr>
<tr>
<td>ANTHRO 166</td>
<td>Political Ecology of Tropical Land Use: Conservation, Natural Resource Extraction, and Agribusiness</td>
<td>3-5</td>
</tr>
<tr>
<td>ANTHRO 177</td>
<td>Environmental Change and Emerging Infectious Diseases</td>
<td>3-5</td>
</tr>
<tr>
<td>BIOHOPK 168H</td>
<td>Disease Ecology: from parasites evolution to the socio-economic impacts of pathogens on nations</td>
<td>3</td>
</tr>
<tr>
<td>EARTSYS 107</td>
<td>Control of Nature</td>
<td>3</td>
</tr>
<tr>
<td>EARTSYS 136</td>
<td>The Ethics of Stewardship</td>
<td>2-3</td>
</tr>
<tr>
<td>EARTSYS 139</td>
<td>Ecosystem Services: Frontiers in the Science of Valuing Nature</td>
<td>3</td>
</tr>
<tr>
<td>EARTSYS 159</td>
<td>Economic, Legal, and Political Analysis of Climate-Change Policy</td>
<td>5</td>
</tr>
<tr>
<td>EARTSYS 185</td>
<td>Feeding Nine Billion</td>
<td>4-5</td>
</tr>
<tr>
<td>EARTSYS 185</td>
<td>Feeding Nine Billion</td>
<td>4-5</td>
</tr>
<tr>
<td>HUMBIO 118</td>
<td>Theory of Ecological and Environmental Anthropology</td>
<td>5</td>
</tr>
<tr>
<td>LAW 2515</td>
<td>Environmental Justice</td>
<td>3</td>
</tr>
</tbody>
</table>
Energy, Science, and Technology

Learning Objectives:

1. Apply fundamental engineering principles to assess how transformation of systems of energy production, distribution, and consumption can contribute to achieving greater energy sustainability.

2. Use fundamental engineering principles—together with knowledge of economics, human behavior, energy infrastructure, and earth systems science—to assess and critique policy- and market-based solutions proposed to achieve greater energy sustainability.

3. Apply written, visual, and oral presentation skills to communicate scientific, technological, and policy knowledge to expert and non-expert audiences.

Requirements

All students must complete the Required Core Courses (p. 2) listed under the "Bachelor's (p. 2)" tab in addition to the required courses listed below.

Additional Foundation and Breadth Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 81</td>
<td>Introduction to Ecology</td>
<td>4</td>
</tr>
<tr>
<td>or BIOHOPK 81</td>
<td>Introduction to Ecology</td>
<td>4</td>
</tr>
<tr>
<td>or BIO 83</td>
<td>Biochemistry & Molecular Biology</td>
<td>4</td>
</tr>
<tr>
<td>or HUMBIO 2A</td>
<td>Genetics, Evolution, and Ecology</td>
<td>4</td>
</tr>
<tr>
<td>& HUMBIO 2B</td>
<td>and Culture, Evolution, and Society</td>
<td>4</td>
</tr>
<tr>
<td>or EARTHSYS 1</td>
<td>Ecology of the Hawaiian Islands</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 31A</td>
<td>Chemical Principles I</td>
<td>5</td>
</tr>
<tr>
<td>& CHEM 31B</td>
<td>and Chemical Principles II</td>
<td>5</td>
</tr>
<tr>
<td>or CHEM 31X</td>
<td>Chemical Principles Accelerated</td>
<td>5</td>
</tr>
<tr>
<td>ECON 1</td>
<td>Principles of Economics</td>
<td>5</td>
</tr>
<tr>
<td>GEOLSCI 1</td>
<td>Introduction to Geology</td>
<td>4-5</td>
</tr>
<tr>
<td>or GEOLSCI 4</td>
<td>Coevolution of Earth and Life</td>
<td>4-5</td>
</tr>
<tr>
<td>or EARTHSYS 1</td>
<td>Earth Sciences of the Hawaiian Islands</td>
<td>4-5</td>
</tr>
<tr>
<td>or EARTHSYS 1</td>
<td>Evolution of Terrestrial Ecosystems</td>
<td>4-5</td>
</tr>
</tbody>
</table>

Biogeochemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 177</td>
<td>Aquatic Chemistry and Biology</td>
<td>4</td>
</tr>
<tr>
<td>CEE 274A</td>
<td>Environmental Microbiology I</td>
<td>3</td>
</tr>
<tr>
<td>EARTHSYS 132</td>
<td>Evolution of Earth Systems</td>
<td>4</td>
</tr>
<tr>
<td>EARTHSYS 143</td>
<td>Molecular Geomicrobiology Laboratory</td>
<td>3-4</td>
</tr>
<tr>
<td>EARTHSYS 151</td>
<td>Biological Oceanography</td>
<td>3-4</td>
</tr>
<tr>
<td>EARTHSYS 152</td>
<td>Marine Chemistry</td>
<td>3-4</td>
</tr>
<tr>
<td>EARTHSYS 155</td>
<td>Science of Soils</td>
<td>3-4</td>
</tr>
<tr>
<td>EARTHSYS 158</td>
<td>Geomicrobiology</td>
<td>3</td>
</tr>
<tr>
<td>ESS 256</td>
<td>Soil and Water Chemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

Methods

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARTHSYS 144</td>
<td>Fundamentals of Geographic Information Science (GIS) (REQUIRED)</td>
<td>3-4</td>
</tr>
<tr>
<td>Earthys 124</td>
<td>Earth Systems 124</td>
<td>4</td>
</tr>
<tr>
<td>EARTHSYS 142</td>
<td>Remote Sensing of Land</td>
<td>4</td>
</tr>
<tr>
<td>EARTHSY 211</td>
<td>Fundamentals of Modeling</td>
<td>3-5</td>
</tr>
<tr>
<td>ESS 124</td>
<td>Advanced Geographic Information Systems</td>
<td>4</td>
</tr>
<tr>
<td>ESS 165</td>
<td>Physical Hydrogeology</td>
<td>4</td>
</tr>
<tr>
<td>ESS 220</td>
<td>Geosystems</td>
<td>4</td>
</tr>
<tr>
<td>GEOLSCI 240</td>
<td>Data science for geoscience</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Requirement

Two additional courses at the 100-level or above are required. Each must be a minimum of 3 units.

Energy Fundamentals (required for all)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 19</td>
<td>Calculus</td>
<td>9</td>
</tr>
<tr>
<td>& MATH 20 & MATH 21</td>
<td>Calculus</td>
<td>9</td>
</tr>
<tr>
<td>CME 100</td>
<td>Vector Calculus for Engineers (preferred)</td>
<td>5</td>
</tr>
<tr>
<td>or MATH 51</td>
<td>Linear Algebra, Multivariable Calculus, and Modern Applications</td>
<td>5</td>
</tr>
<tr>
<td>PHYSICS 43</td>
<td>Electricity and Magnetism</td>
<td>4</td>
</tr>
<tr>
<td>PHYSICS 45</td>
<td>Light and Heat</td>
<td>4</td>
</tr>
<tr>
<td>BIOHOPK 174H</td>
<td>Experimental Design and Probability</td>
<td>3</td>
</tr>
<tr>
<td>or ECON 102A</td>
<td>Introduction to Statistical Methods (Postcalculus) for Scientists</td>
<td>3</td>
</tr>
<tr>
<td>or STATS 101</td>
<td>Data Science 101</td>
<td>3</td>
</tr>
<tr>
<td>or STATS 110</td>
<td>Statistical Methods in Engineering and the Physical Sciences</td>
<td>3</td>
</tr>
<tr>
<td>or STATS 116</td>
<td>Theory of Probability</td>
<td>3</td>
</tr>
<tr>
<td>or STATS 141</td>
<td>Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>or CME 106</td>
<td>Introduction to Probability and Statistics for Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>

Energy Resources & Technology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARTHSYS 101</td>
<td>Energy and the Environment</td>
<td>3</td>
</tr>
<tr>
<td>EARTHSYS 102</td>
<td>Fundamentals of Renewable Power</td>
<td>3</td>
</tr>
<tr>
<td>EARTHSYS 103</td>
<td>Understanding Energy</td>
<td>4-5</td>
</tr>
</tbody>
</table>

Choose at least one course in each of the three sub-categories, total five required. Note that many of these have prerequisite work.

Energy Policy, Economics & Entrepreneurship

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGY 110</td>
<td>Engineering Economics</td>
<td>3</td>
</tr>
</tbody>
</table>

Units
Environmental Geoscience

Learning Objectives:

1. Understand and articulate the ways in which Earth's interior and surface operate, and how these systems are connected to one another and inextricably bound to the evolution of life and current human activities.
2. Understand and view the current state of, and expected changes within, the earth system in the context of past changes experienced by our planet.
3. Apply understanding of earth and human systems to develop workable, scientifically based, human-centered solutions to building resilience to natural hazards, and our planet's most pressing environmental challenges.

Requirements

All students must complete the Required Core Courses (p. 2) listed under the "Bachelor's (p. 2)" tab in addition to the required courses listed below.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGY 171</td>
<td>Energy Infrastructure, Technology and Economics</td>
<td>3</td>
</tr>
<tr>
<td>ENERGY 191</td>
<td>Optimization of Energy Systems</td>
<td>3-4</td>
</tr>
<tr>
<td>GSBGEN 336</td>
<td>Energy Markets and Policy</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 243</td>
<td>Energy and Environmental Policy Analysis</td>
<td>3</td>
</tr>
<tr>
<td>LAW 2503</td>
<td>Energy Law</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 294</td>
<td>Systems Modeling for Climate Policy Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MS&E 295</td>
<td>Energy Policy Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Requirement

One additional course at the 100-level or above is required. This course must be a minimum of 3 units. 3 units of approved energy seminars may count as one elective. See Earth Systems staff for the approved seminar list.

Human Environmental Systems

Learning Objectives:

1. Apply knowledge of fundamental physical and biological Earth system processes to analyze how human decisions shape environmental outcomes.
2. Apply fundamental principles and frameworks from the social sciences to analyze and understand (a) how humans make environmentally relevant decisions, and (b) how environmental changes shape human outcomes.

All students must complete the Required Core Courses (p. 2) listed under the "Bachelor's (p. 2)" Tab in addition to the required courses listed below.
or HUMBIO 2A Genetics, Evolution, and Ecology & HUMBIO 2B and Culture, Evolution, and Society or EARTHSYS 2Biology of the Hawaiian Islands

Chemistry

<table>
<thead>
<tr>
<th>Units</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-10</td>
<td>CHEM 31X Chemical Principles Accelerated</td>
</tr>
<tr>
<td></td>
<td>CHEM 31A Chemical Principles I</td>
</tr>
<tr>
<td></td>
<td>& CHEM 31B Chemical Principles II</td>
</tr>
</tbody>
</table>

Economics

<table>
<thead>
<tr>
<th>Units</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>ECON 1 Principles of Economics</td>
</tr>
<tr>
<td></td>
<td>ECON 50 Economic Analysis I</td>
</tr>
<tr>
<td></td>
<td>ECON 155 Environmental Economics and Policy</td>
</tr>
</tbody>
</table>

Geological Sciences

<table>
<thead>
<tr>
<th>Units</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-5</td>
<td>EARTHSYS 117 Earth Sciences of the Hawaiian Islands</td>
</tr>
<tr>
<td></td>
<td>GEOLSCI 1 Introduction to Geology</td>
</tr>
<tr>
<td></td>
<td>GEOLSCI 4 Coevolution of Earth and Life</td>
</tr>
<tr>
<td></td>
<td>EARTHSYS 128 Evolution of Terrestrial Ecosystems</td>
</tr>
</tbody>
</table>

Mathematics

<table>
<thead>
<tr>
<th>Units</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-15</td>
<td>MATH 19 Calculus & MATH 20 and Calculus</td>
</tr>
<tr>
<td></td>
<td>& MATH 21 and Calculus</td>
</tr>
<tr>
<td></td>
<td>MATH 20 Calculus</td>
</tr>
<tr>
<td></td>
<td>MATH 21 Calculus</td>
</tr>
<tr>
<td></td>
<td>MATH 51 Linear Algebra, Multivariable Calculus, and Modern Applications</td>
</tr>
<tr>
<td></td>
<td>or CME 100 Vector Calculus for Engineers</td>
</tr>
<tr>
<td></td>
<td>ECON 102A Introduction to Statistical Methods (Postcalculus) for Social Scientists</td>
</tr>
<tr>
<td></td>
<td>or BIO 141 Biostatistics</td>
</tr>
<tr>
<td></td>
<td>CS 106A Programming Methodology</td>
</tr>
</tbody>
</table>

Probability and Statistics

<table>
<thead>
<tr>
<th>Units</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-5</td>
<td>BIOHOPK 174H Experimental Design and Probability</td>
</tr>
<tr>
<td></td>
<td>BIO 141 Biostatistics</td>
</tr>
<tr>
<td></td>
<td>ECON 102A Introduction to Statistical Methods (Postcalculus) for Social Scientists</td>
</tr>
<tr>
<td></td>
<td>STATS 101 Data Science 101</td>
</tr>
<tr>
<td></td>
<td>STATS 110 Statistical Methods in Engineering and the Physical Sciences</td>
</tr>
<tr>
<td></td>
<td>STATS 116 Theory of Probability</td>
</tr>
<tr>
<td></td>
<td>CME 106 Introduction to Probability and Statistics for Engineers</td>
</tr>
</tbody>
</table>

Choose one course in each of the three following sub-categories, with a total of six required. At least one of the six must be a skills/methods course marked with an asterisk (*):

Economics, Policy, and Sustainable Development

<table>
<thead>
<tr>
<th>Units</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-5</td>
<td>EARTHSYS 136 The Ethics of Stewardship</td>
</tr>
<tr>
<td></td>
<td>CEE 175A California Coast: Science, Policy, and Law</td>
</tr>
<tr>
<td></td>
<td>ECON 51 Economic Analysis II</td>
</tr>
<tr>
<td></td>
<td>ECON 102B Applied Econometrics (*)</td>
</tr>
<tr>
<td></td>
<td>ECON 106 World Food Economy (*)</td>
</tr>
<tr>
<td></td>
<td>CEE 175A California Coast: Science, Policy, and Law</td>
</tr>
<tr>
<td></td>
<td>ECON 118 Development Economics</td>
</tr>
</tbody>
</table>

Mathematics

<table>
<thead>
<tr>
<th>Units</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>MATH 19 Calculus</td>
</tr>
<tr>
<td></td>
<td>& MATH 20 and Calculus</td>
</tr>
<tr>
<td></td>
<td>& MATH 21 and Calculus</td>
</tr>
<tr>
<td></td>
<td>MATH 20 Calculus</td>
</tr>
<tr>
<td></td>
<td>MATH 21 Calculus</td>
</tr>
<tr>
<td></td>
<td>MATH 51 Linear Algebra, Multivariable Calculus, and Modern Applications</td>
</tr>
<tr>
<td></td>
<td>or CME 100 Vector Calculus for Engineers</td>
</tr>
<tr>
<td></td>
<td>ECON 102A Introduction to Statistical Methods (Postcalculus) for Social Scientists</td>
</tr>
<tr>
<td></td>
<td>or BIO 141 Biostatistics</td>
</tr>
<tr>
<td></td>
<td>CS 106A Programming Methodology</td>
</tr>
</tbody>
</table>

Units

Choose one course in each of the three following sub-categories, with a total of six required. At least one of the six must be a skills/methods course marked with an asterisk (*):

Economics, Policy, and Sustainable Development

<table>
<thead>
<tr>
<th>Units</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-5</td>
<td>ECON 121 (Not offered 18-19)</td>
</tr>
<tr>
<td></td>
<td>ECON 150 Economic Policy Analysis</td>
</tr>
<tr>
<td></td>
<td>ECON 159 Economic, Legal, and Political Analysis of Climate-Change Policy</td>
</tr>
<tr>
<td></td>
<td>ECON 51 Economic Analysis II</td>
</tr>
<tr>
<td></td>
<td>INTNLREL 135A International Environmental Law and Policy</td>
</tr>
<tr>
<td></td>
<td>IPS 270</td>
</tr>
<tr>
<td></td>
<td>LAW 2504 Environmental Law and Policy</td>
</tr>
<tr>
<td></td>
<td>MS&E 243 Energy and Environmental Policy Analysis</td>
</tr>
<tr>
<td></td>
<td>GSBGEN 336 Energy Markets and Policy</td>
</tr>
<tr>
<td></td>
<td>MS&E 299 Systems Modeling for Climate Policy Analysis</td>
</tr>
<tr>
<td></td>
<td>MS&E 295 Energy Policy Analysis</td>
</tr>
</tbody>
</table>

Human Behavior and Adaptation

<table>
<thead>
<tr>
<th>Units</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-5</td>
<td>CEE 151 Negotiation</td>
</tr>
<tr>
<td></td>
<td>ANTHRO 116B Anthropology of the Environment</td>
</tr>
<tr>
<td></td>
<td>ANTHRO 166 Political Ecology of Tropical Land Use: Conservation, Natural Resource Extraction, and Agribusiness</td>
</tr>
<tr>
<td></td>
<td>CEE 124 Sustainable Development Studio</td>
</tr>
<tr>
<td></td>
<td>CEE 126A (Not offered 18-19)</td>
</tr>
<tr>
<td></td>
<td>CEE 126B (Not offered 18-19)</td>
</tr>
<tr>
<td></td>
<td>EARTHYS 138 International Urbanization Seminar: Cross-Cultural Collaboration for Sustainable Urban Development</td>
</tr>
</tbody>
</table>

Data Science and Analysis

<table>
<thead>
<tr>
<th>Units</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-5</td>
<td>CS 102 Big Data - Tools and Techniques</td>
</tr>
<tr>
<td></td>
<td>CS 106B Programming Abstractions</td>
</tr>
<tr>
<td></td>
<td>CS 124 From Languages to Information</td>
</tr>
<tr>
<td></td>
<td>ECON 102B Applied Econometrics (*)</td>
</tr>
<tr>
<td></td>
<td>EARTHYS 141 Remote Sensing of the Oceans (*)</td>
</tr>
<tr>
<td></td>
<td>EARTHYS 142 Remote Sensing of Land (*)</td>
</tr>
<tr>
<td></td>
<td>EARTHYS 144 Fundamentals of Geographic Information Science (GIS) (*)</td>
</tr>
<tr>
<td></td>
<td>EARTHYS 162 Data for Sustainable Development</td>
</tr>
<tr>
<td></td>
<td>ENERGY 240 Data science for geoscience</td>
</tr>
<tr>
<td></td>
<td>ESS 165 Advanced Geographic Information Systems (*)</td>
</tr>
<tr>
<td></td>
<td>ESS 214 Introduction to geostatistics and modeling of spatial uncertainty (*)</td>
</tr>
<tr>
<td></td>
<td>ESS 268 Empirical Methods in Sustainable Development (*)</td>
</tr>
</tbody>
</table>
Learning Objectives:

1. Design strategies for using multi-source and multi-scale observations of land surface processes that integrate field, geospatial, and human survey data to describe biophysical and socio-economic impacts of land systems changes.
2. Integrate biophysical and socioeconomic data related to land use and land cover change using geospatial tools to analyze and model complex, multi-scalar human-environmental interactions that determine land use dynamics.
3. Determine remedies to address negative impacts of land changes on human-environmental systems using land-use management tools and interventions.

Requirements

All students must complete the Required Core Courses (p. 2) listed under the "Bachelor's (p. 2)" tab in addition to the required courses listed below.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS&E 231</td>
<td>Introduction to Computational Social Science</td>
<td>3</td>
</tr>
<tr>
<td>STATS 216</td>
<td>Introduction to Statistical Learning</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Requirement

Two additional courses at the 100-level or above are required. Each must be a minimum of 3 units.

A total of 7 courses are required from the 4 Land Systems Focus Areas. Concentrating courses in a single focus area below will allow students to deepen their understanding of the chosen system. For breadth considerations, students are required to take a minimum of 1 course from each focus area. In addition, two electives are required for this track. All track courses and electives must be taken for a letter grade (9 courses total).

Land Ecosystems:

- **EARTHSYS 155** Science of Soils (recommended) 3-4
- **EARTHSYS 180** Principles and Practices of Sustainable Agriculture (recommended) 3-4
- **BIO 144** Conservation Biology: A Latin American Perspective 3
- **EARTHSYS 105A & EARTHSYS 105B** Biological Preserve and Ecology and Natural History of Jasper Ridge Biological Preserve 8
- **EARTHSYS 116** Ecology of the Hawaiian Islands 4
- **EARTHSYS 128** Evolution of Terrestrial Ecosystems 4
- **ESS 256** Soil and Water Chemistry 3
- **ESS 223** Ecophysiology and Land Surface Processes 4
- **OSPSANTG 58** Living Chile: A Land of Extremes 5

Water:

- **CEE 166A** Watersheds and Wetlands (recommended) 4
- **CEE 101B** Mechanics of Fluids 4
- **CEE 162E** Rivers, Streams, and Canals 3-4
- **CEE 165C** Water Resources Management 3
- **CEE 166B** Floods and Droughts, Dams and Aqueducts 4
- **CEE 177** Aquatic Chemistry and Biology 4
- **EARTHSYS 104** The Water Course 3
- **GEOPHYS 190** Near-Surface Geophysics 3
- **OSPAUSTL 25** Freshwater Systems 3
- **OSPSANTG 79** Earth and Water Resources' Sustainability in Spain 3-4

Land Use:

- **ESS 270** Analyzing land use in a globalized world (recommended) 3
- **ANTHR 166** Political Ecology of Tropical Land Use: Conservation, Natural Resource Extraction, and Agribusiness 3-5
- **CEE 124** Sustainable Development Studio 1-5
- **CEE 175A** California Coast: Science, Policy, and Law 3-4
- **CEE 176A** Energy Efficient Buildings 3-4
- **EARTHSYS 118** Heritage, Environment, and Sovereignty in Hawaii 4
- **EARTHSYS 185** Feeding Nine Billion 4-5
- **EARTHSYS 238** Land Use Law 3
- **ECON 106** World Food Economy 4
- **ENERGY 101** Energy and the Environment 3
- **ENERGY 102** Fundamentals of Renewable Power 3
- **ENERGY 104** Sustainable Energy for 9 Billion 3
- **ENVRES 250** Environmental Governance 3
- **OSPSANTG 29** Sustainable Cities: Comparative Transportation Systems in Latin America 5
- **SIW 144** Energy, Environment, Climate and Conservation Policy: A Washington, D.C. Perspective 5
- **URBANST 110** Introduction to Urban Studies 4
- **ECON 106** World Food Economy 4
- **URBANST 113** Introduction to Urban Design: Contemporary Urban Design in Theory and Practice 5
- **EARTHSYS 185** Feeding Nine Billion 4-5
URBANST 164 Sustainable Cities 4-5
Methods:
EARTHSYS 144 Fundamentals of Geographic Information Science (GIS) (required)
Biogeophysical Dimensions (3 required):
EARTHSYS 124 Measurements in Earth Systems 3-4
EARTHSYS 142 Remote Sensing of Land 4
EARTHSYS 211 Fundamentals of Modeling 3-5
ESS 165 Advanced Geographic Information Systems 4
ESS 220 Physical Hydrogeology 4
GEOLSCI 240 Data science for geoscience 3

Two additional courses at the 100-level or above are required. Each must be a minimum of 3 units. See Earth Systems staff for a list of possible electives.

Oceans, Atmosphere, and Climate
Learning Objectives:
1. Apply fundamental physical, chemical, and biological principles toward understanding the behavior of the oceans, atmosphere, and climate and the interrelationships of these systems with human society.
2. Apply fundamental principles of ocean, atmospheric, and climate science through field, laboratory, and computer-based research experiences.

Requirements
All students must complete the Required Core Courses (p. 2) listed under the "Bachelor's (p. 2)" tab in addition to the required courses listed below.

Additional Foundation and Breadth Courses
BIO 81 Introduction to Ecology 4-10
or BIOHOPK 81 Introduction to Ecology
or HUMBIO 2A Genetics, Evolution, and Ecology
or HUMBIO 2B and Culture, Evolution, and Society
or EARTHSYS 1 Ecology of the Hawaiian Islands
CHEM 31A Chemical Principles I 5
& CHEM 31B and Chemical Principles II
or CHEM 31X Chemical Principles Accelerated
MATH 19 Calculus 3
& MATH 20 and Calculus
& MATH 21 and Calculus
MATH 51 Linear Algebra, Multivariable Calculus, and Modern Applications 3
& MATH 52 and Integral Calculus of Several Variables
(CME 100 preferred over MATH 51 and MATH 52)
or CME 100 Vector Calculus for Engineers
Physics (select one of the following): 3-4
PHYSICS 41 Mechanics
& PHYSICS 45 and Light and Heat
or GEOPHYS 1 Introduction to the foundations of contemporary geophysics
BIOHOPK 174H Experimental Design and Probability
or ECON 102A Introduction to Statistical Methods (Postcalculus) for Social Scientists
or STATS 101 Data Science 101
or STATS 110 Statistical Methods in Engineering and the Physical Sciences
or STATS 116 Theory of Probability

Sustainable Food and Agriculture
Learning Objectives:
1. Describe the main biophysical and socioeconomic constraints in food systems at global and local scales.
2. Apply knowledge of agricultural soils and plant growth to solve problems related to crop production, soil conservation, and natural resource management.
3. Identify the links between food systems and other aspects of the Earth system, including water, energy, and climate systems.
4. Assess and critique proposed policy or technological solutions that claim to make food systems more sustainable.

Requirements
All students must complete the Required Core Courses (p. 2) listed under the "Bachelor's (p. 2)" tab in addition to the required courses listed below.

Additional Foundation and Breadth Courses
BIO 81 Introduction to Ecology 4
or BIOHOPK 81 Introduction to Ecology
or HUMBIO 2A Genetics, Evolution, and Ecology
or HUMBIO 2B and Culture, Evolution, and Society
or EARTHSYS 1 Ecology of the Hawaiian Islands
CHEM 31A Chemical Principles I 5-10
& CHEM 31B and Chemical Principles II
or CHEM 31X Chemical Principles Accelerated
CHEM 31A Chemical Principles I 5-10
& CHEM 31B and Chemical Principles II
or CHEM 31X Chemical Principles Accelerated
ECON 1 Principles of Economics 5
ECON 155 Environmental Economics and Policy 5
GEOLSCI 1 Introduction to Geology 4-5
or GEOLSCI 4 Coevolution of Earth and Life
or EARTHSYS 1 Earth Sciences of the Hawaiian Islands
or EARTHSYS 1 Evolution of Terrestrial Ecosystems

MATH 19 Calculus 9
&MATH 20 and Calculus
&MATH 21 and Calculus

MATH 51 Linear Algebra, Multivariable Calculus, and Modern Applications 5
or CME 100 Vector Calculus for Engineers

PHYSICS 41 Mechanics 4
or PHYSICS 45 Light and Heat
or GEOPHYS 11 Introduction to the foundations of contemporary geophysics

A total of 7 courses are required from the Food and Agriculture Focus Areas. In addition, two electives are required for this track. All track courses and electives must be taken for a letter grade (nine courses total).

Fundamentals of Agriculture Production and Economics (both required):
ECON 106 World Food Economy 4
EARTHSYS 185 Feeding Nine Billion 4-5

Biogeophysical Dimensions (3 required):
EARTHSYS 155 Science of Soils 3-4
BIO 115 The Hidden Kingdom - Evolution, Ecology and Diversity of Fungi 4
EARTHSYS 142 Remote Sensing of Land 4
EARTHSYS 256 Soil and Water Chemistry 3
BIO 137 (Not given this year)
HUMBIO 113 The Human-Plant Connection 3
HUMBIO 130 Human Nutrition 4

Social Dimensions (choose 1):
ARCHLGY 124 Archaeology of Food: production, consumption and ritual 3-5
BIO 144 Conservation Biology: A Latin American Perspective 3
EARTHSYS 136 The Ethics of Stewardship 2-3
EARTHSYS 187 FEED the Change: Redesigning Food Systems 2-3
ECON 118 Development Economics 5
HUMBIO 113S Healthy/Sustainable Food Systems: Maximum Sustainability across Health, Economics, and Environment 4
HUMBIO 166 Food and Society: Exploring Eating Behaviors in Social, Environmental, and Policy Context 4
OSPMADRD 79 Earth and Water Resources’ Sustainability in Spain 3-4

Minor in Earth Systems, Sustainability Subplan

The minor in Earth Systems, Sustainability subplan, provides students with foundational knowledge, skills, and frameworks needed to understand social-environmental systems and address intergenerational sustainability challenges. Students declaring the minor in Earth Systems must also declare the Sustainability subplan.

To minor in Earth Systems, students must take the core courses listed below and approved electives for a minimum of 35 units. Courses that count toward the fulfillment of major requirements may not be counted toward the minor, and all courses must be taken for a letter grade.

Students declaring a minor in Earth Systems must do so no later than two quarters prior to their intended quarter of degree conferral; for example, a student must declare a minor before the end of Autumn Quarter to graduate the following Spring Quarter. The Sustainability subplan must also be declared in Axess when declaring the minor.

In addition, students pursuing the minor must complete the Multiple Major/Minor Form (http://studentaffairs.stanford.edu/sites/default/files/registrar/files/MajMin_MultMaj.pdf) and have it reviewed by all applicable departments/programs. This form must be submitted to the Student Services Center (https://studentservicescenter.stanford.edu/%22%20%5Ct%20%22_blank) by the application to graduate deadline for the term in which the student intends to graduate.

Required Course Work

Core

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARTHSYS 10</td>
<td>4</td>
</tr>
<tr>
<td>EARTHSYS 111</td>
<td>4</td>
</tr>
<tr>
<td>EARTHSYS 112</td>
<td>4</td>
</tr>
</tbody>
</table>

(ECON 1 recommended as a pre- or co-requisite to EARTHSYS 112.)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARTHSYS 131</td>
<td>1</td>
</tr>
<tr>
<td>SUST 210</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

Students must take a minimum of 19 units of electives at the 100-level or above that address dimensions of environmental systems and social-environmental systems in theory or practice, with at least one course taken in each of the following four categories: Earth Systems Science/Engineering; Environmental Justice; Applied Problem Solving; and Skills.

Students may double-count courses in these categories (i.e. if a course fulfills both the Environmental Justice and Applied Problem Solving requirements, it can be applied to both categories).

A list of approved electives is available on the Earth Systems website and in the Earth Systems Program office (Y2E2 131). Students may petition to count one relevant freshman or sophomore seminar toward the minor.

Coterminal Master’s Degrees in Earth Systems

The Earth Systems Program offers current Stanford University undergraduates the opportunity to apply to a one-year coterminal master’s program. Earth Systems offers a coterminal Master of Science (M.S.) degree in Earth Systems and a coterminal Master of Arts (M.A.) degree in Earth Systems, Environmental Communication. The Environmental Communication subplan prints on both the transcript and the diploma.
Application and Admission

The Earth Systems Program has quarterly coterminal degree application deadlines: November 6, 2018; February 19, 2019; and May 14, 2019. Seniors must apply by Winter Quarter deadline. To apply, students should submit an online application. The application includes the following:

- The Stanford coterminal application (https://www.applyweb.com/stanterm)
- A statement of purpose
- A resume
- A current Stanford unofficial transcript
- Two letters of recommendation, one of which must be from the master's adviser (who must be an Academic Council member; each coterminal M.A. student has two advisers: Thomas Hayden and Kevin Arrigo, or another approved faculty adviser who is an Academic Council member)
- Master's Program Proposal (https://earth.stanford.edu/esys/program-forms): A list of courses that fulfill degree requirements signed by the master's adviser

1. Applications must be submitted no later than the quarter prior to the expected completion of the B.S. degree (and within quarterly application deadlines). An application fee is assessed by the Registrar's Office for coterminal applications, once students are matriculated into the program.

2. Students applying to the coterminal master's program must have completed a minimum of 120 units toward graduation with a minimum overall Stanford GPA of 3.4.

3. All applicants must devise a program of study that shows a level of specialization appropriate to the master's level, as determined in consultation with the master's adviser and the Director of Earth Systems. (See also following sections, Master of Science and Master of Arts in Earth Systems Degree Requirements).

4. Students applying from an undergraduate major other than Earth Systems should review their undergraduate course list with Deana Fabbro-Johnston, Richard Nevle, or Thomas Hayden (M.A. only).

5. The student has the option of receiving the B.S. degree after completing that degree's requirements or receiving the B.S. and M.A./M.S. degrees concurrently at the completion of the master's program.

6. Students must submit a new application to change from the M.S. to the M.A. in Earth Systems, or from the M.A. to the M.S. in Earth Systems. If accepted, the student must submit a Graduate Authorization Petition through Axess; a $125 fee applies to a successful Graduate Authorization Petition.

University Coterminal Requirements

Coterminal master's degree candidates are expected to complete all master's degree requirements as described in this bulletin. University requirements for the coterminal master's degree are described in the "Coterminal Master's Program (http://exploredegrees.stanford.edu/cotermdegrees)" section. University requirements for the master's degree are described in the "Graduate Degrees (http://exploredegrees.stanford.edu/graduatedegrees/#masterstext)" section of this bulletin.

After accepting admission to this coterminal master's degree program, students may request transfer of courses from the undergraduate to the graduate career to satisfy requirements for the master's degree. Transfer of courses to the graduate career requires review and approval of both the undergraduate and graduate programs on a case by case basis.

In this master's program, courses taken during or after the first quarter of the sophomore year are eligible for consideration for transfer to the graduate career; the timing of the first graduate quarter is not a factor. No courses taken prior to the first quarter of the sophomore year may be used to meet master's degree requirements.

Course transfers are not possible after the bachelor's degree has been conferred.

The University requires that the graduate adviser be assigned in the student's first graduate quarter even though the undergraduate career may still be open. The University also requires that the Master's Degree Program Proposal be completed by the student and approved by the department by the end of the student's first graduate quarter.

Coterminal Master of Science in Earth Systems Degree Requirements

The master of science degree in Earth Systems allows specialization through graduate-level course work that may include up to 9 units of research with the master's adviser. This may culminate in the preparation of a M.S. thesis; however, a thesis is not required for the degree. The process of building mastery in the field is enriched through steady communication with a faculty adviser.

The following are required of all M.S. students:

- A minimum of 45 units of course work and/or research credit (upon approval).
- At least 34 units of the student's course work for the master's program must be at the 200-level or above.
- All remaining course work must be at the 100-level or above.
- All courses for the master's program must be taken for a letter grade; courses not taken for a letter grade must be approved by the master's adviser and Director of Earth Systems.
- A minimum overall GPA of 3.4 must be maintained.
- All coterminal master's students are required to take the capstone course, EARTHSYS 290 Master's Seminar.

For the Master of Science degree in Earth Systems, the following courses must be taken if not completed in the undergraduate degree program. These courses do not have to be completed before applying to the coterm program. These may not be counted as part of the 45-unit master's degree:

<table>
<thead>
<tr>
<th>Units</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>EARTHSYS 111 Biology and Global Change</td>
</tr>
<tr>
<td></td>
<td>EARTHSYS 112 Human Society and Environmental Change</td>
</tr>
<tr>
<td>4-10</td>
<td>Biology: One Biology Foundations/Core course pre-approved by Master's adviser, OR select from the following:</td>
</tr>
<tr>
<td></td>
<td>HUMBIO 2A Genetics, Evolution, and Ecology</td>
</tr>
<tr>
<td></td>
<td>HUMBIO 2B and Culture, Evolution, and Society</td>
</tr>
<tr>
<td></td>
<td>BIOHOPK 47 Introduction to Research in Ecology and Ecological Physiology</td>
</tr>
<tr>
<td></td>
<td>EARTHSYS 116 Ecology of the Hawaiian Islands</td>
</tr>
<tr>
<td>5-10</td>
<td>Chemistry (select one of the following):</td>
</tr>
<tr>
<td></td>
<td>CHEM 31X Chemical Principles Accelerated</td>
</tr>
<tr>
<td></td>
<td>CHEM 31A Chemical Principles I and Chemical Principles II</td>
</tr>
<tr>
<td>3-4</td>
<td>Physics (select one of the following):</td>
</tr>
<tr>
<td></td>
<td>One physics class from the PHYSICS 20 or 40 series or GEOPHYS 110</td>
</tr>
<tr>
<td>5</td>
<td>Mathematics (select one of the following):</td>
</tr>
<tr>
<td></td>
<td>MATH 51 Linear Algebra, Multivariable Calculus, and Modern Applications</td>
</tr>
<tr>
<td></td>
<td>CME 100 Vector Calculus for Engineers</td>
</tr>
<tr>
<td>3-5</td>
<td>Statistics (select one of the following):</td>
</tr>
<tr>
<td></td>
<td>BIOHOPK 174H Experimental Design and Probability</td>
</tr>
<tr>
<td></td>
<td>BIO 141 Biostatistics</td>
</tr>
</tbody>
</table>
Coterminal Master of Arts in Earth Systems, Environmental Communication

Degree Requirements

The Earth Systems Program offers current Stanford University undergraduates the opportunity to apply for admission to a 45-unit coterminal Master of Arts (MA) program in Earth Systems, Environmental Communication. The Earth Systems Master of Arts degree provides an overview of the theory, techniques, and challenges of communicating environmental science and policy concepts to diverse audiences and includes hands-on experience with different modalities of communication including writing, journalism, multimedia production, and informal education. The degree program is built on a set of required Core courses including a weekly seminar, a practicum placement, and a capstone project, enhanced with a range of individually selected Focus courses chosen either to emphasize a particular topic or modality or to provide greater breadth and diversity of study topics within environmental communication. Focus courses are selected in close consultation with the MA Director and a faculty co-adviser.

All Earth Systems Master of Arts students are also required to complete the Earth Systems Core, namely EARTHSYS 10 Introduction to Earth Systems (may be audited), EARTHSYS 111 Biology and Global Change, and EARTHSYS 112 Human Society and Environmental Change. These courses may be taken concurrently with the MA degree but may not be counted toward the 45 units required for the MA degree. Rarely, additional prerequisites or foundational courses may be required depending on the academic background and intended focus of each student.

The following are required of all M.A. students:

- All M.A. students must declare the Environmental Communication subplan in Axess.
- A minimum of 45 units of course work and/or research credit (upon approval).
- At least 34 units of the student's course work for the master's program must be at the 200-level or above.
- All remaining course work must be at the 100-level or above.
- All courses for the master's program must be taken for a letter grade; courses not taken for a letter grade must be approved by the master's adviser and Director of Earth Systems.
- A minimum overall GPA of 3.4 must be maintained.
- All coterminal master's students are required to take the capstone course, EARTHSYS 290 Master's Seminar.

Graduate Advising Expectations

The Earth Systems Program is committed to providing academic advising in support of graduate student scholarly and professional development. When most effective, this advising relationship entails collaborative and sustained engagement by both the adviser and the advisee. As a best practice, advising expectations should be periodically discussed and reviewed to ensure mutual understanding. Both the adviser and the advisee are expected to maintain professionalism and integrity.

Faculty advisers guide students in key areas such as selecting courses, designing and conducting research, developing of teaching pedagogy, navigating policies and degree requirements, and exploring academic opportunities and professional pathways.

Graduate students are active contributors to the advising relationship, proactively seeking academic and professional guidance and taking responsibility for informing themselves of policies and degree requirements for their graduate program.

For a statement of University policy on graduate advising, see the "Graduate Advising (http://exploredegrees.stanford.edu/graduatedegrees/#advisingandcredentialstext)" section of this bulletin.

Director: Kevin Arrigo

Deputy Director: Richard Nevle

Associate Director: Deana Fabbro-Johnston

emeritus, Woods Institute for the Environment), Rosamond Naylor (Earth System Science, Freeman Spogli Institute for International Studies, Woods Institute for the Environment), Richard Neve (Earth Systems), Julia Novy-Hildesley (Sustainability Science and Practice), Michael Osborne (Earth Systems), Stephen Palumbi (Biology, Hopkins Marine Station, Woods Institute for the Environment), Jonathan Payne (Geological Sciences), Kabir Peay (Biology), Emily Polk (Program in Writing and Rhetoric), Thomas Robinson (Medicine), Matt Rothe (Earth Systems, Hasso Plattner Institute of Design, Graduate School of Business), Jennifer Saltzman (Geological Sciences), Dustin Schroeder (Geophysics), Paul Segall (Geophysics), Deborah Sivas (Law), George Somero (Biology, Hopkins Marine Station), Jenny Suckale (Geophysics), James Sweeney (Management Science and Engineering, Woods Institute for the Environment), Leif Thomas (Earth System Science), Barton Thompson, Junior (Law, Woods Institute for the Environment), Sarah Truebe (Earth Systems), Tiziana Vanorio (Geophysics), Peter Vitousek (Biology, Emmett Interdisciplinary Program in Environment and Resources, Woods Institute for the Environment), Virginia Walbot (Biology), Paula Welander (Earth System Science), Cindy Wilber (Jasper Ridge), Michael Wilcox (Anthropology), Mikael Wolfe (History), Jane Woodward (Atmosphere and Energy Operations), Mark Zoback (Geophysics)

Overseas Studies Courses in Earth Systems

The Bing Overseas Studies Program (http://bosp.stanford.edu) manages Stanford study abroad programs for Stanford undergraduates. Students should consult their department or program’s student services office for applicability of Overseas Studies courses to a major or minor program.

The Bing Overseas Studies course search site (https://undergrad.stanford.edu/programs/bosp/explore/search-courses) displays courses, locations, and quarters relevant to specific majors.

For course descriptions and additional offerings, see the listings in the Stanford Bulletin’s ExploreCourses (http://explorecourses.stanford.edu) or Bing Overseas Studies (http://bosp.stanford.edu).

Environmental Courses List

<table>
<thead>
<tr>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Coral Reef Ecosystems</td>
</tr>
<tr>
<td>3</td>
<td>Freshwater Systems</td>
</tr>
<tr>
<td>3</td>
<td>Coastal Forest Ecosystems</td>
</tr>
<tr>
<td>3</td>
<td>Socio-Ecological Systems</td>
</tr>
<tr>
<td>3-4</td>
<td>Earth and Water Resources’ Sustainability in Spain</td>
</tr>
<tr>
<td>3-5</td>
<td>Environmental Economics and Policy</td>
</tr>
<tr>
<td>5</td>
<td>Living Chile: A Land of Extremes</td>
</tr>
</tbody>
</table>

Environmental Courses List (Continued)

<table>
<thead>
<tr>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>The Global Positioning System: Where on Earth are We, and What Time is it?</td>
</tr>
<tr>
<td>3</td>
<td>Electric Automobiles and Aircraft</td>
</tr>
<tr>
<td>2</td>
<td>Global Positioning Systems</td>
</tr>
<tr>
<td>3</td>
<td>History of South Africa</td>
</tr>
<tr>
<td>3</td>
<td>History of South Africa</td>
</tr>
<tr>
<td>3</td>
<td>Running While Others Walk: African Perspectives on Development</td>
</tr>
<tr>
<td>3</td>
<td>AIDS, Literacy, and Land: Foreign Aid and Development in Africa</td>
</tr>
<tr>
<td>3</td>
<td>Running While Others Walk: African Perspectives on Development</td>
</tr>
<tr>
<td>2</td>
<td>Media, Culture, and Society</td>
</tr>
<tr>
<td>2</td>
<td>The American West</td>
</tr>
</tbody>
</table>

Anthropology Courses

<table>
<thead>
<tr>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Peopling of the Globe: Changing Patterns of Land Use and Consumption Over the Last 50,000 Years</td>
</tr>
<tr>
<td>3</td>
<td>Animals and Us</td>
</tr>
<tr>
<td>3</td>
<td>Theory of Ecological and Environmental Anthropology</td>
</tr>
<tr>
<td>3</td>
<td>Incas and their Ancestors: Peruvian Archaeology</td>
</tr>
<tr>
<td>3</td>
<td>Thinking Through Animals</td>
</tr>
<tr>
<td>3</td>
<td>Heritage, Environment, and Sovereignty in Hawaii</td>
</tr>
<tr>
<td>3</td>
<td>Zoologia: An Introduction to Faunal Remains</td>
</tr>
<tr>
<td>3</td>
<td>Language and the Environment</td>
</tr>
<tr>
<td>3</td>
<td>The Politics of Humanitarianism</td>
</tr>
<tr>
<td>3</td>
<td>Mobilizing Nature</td>
</tr>
<tr>
<td>3</td>
<td>Science, Technology, and Medicine in Africa</td>
</tr>
<tr>
<td>3</td>
<td>Nature, Culture, Heritage</td>
</tr>
<tr>
<td>3</td>
<td>Research Methods in Ecological Anthropology</td>
</tr>
<tr>
<td>3</td>
<td>Environment, Nature and Race</td>
</tr>
<tr>
<td>3</td>
<td>Social and Environmental Sustainability: The Costa Rican Case</td>
</tr>
<tr>
<td>3</td>
<td>Indigenous Peoples and Environmental Problems</td>
</tr>
<tr>
<td>3</td>
<td>Political Ecology of Tropical Land Use: Conservation, Natural Resource Extraction, and Agribusiness</td>
</tr>
<tr>
<td>3</td>
<td>Everest: Extreme Anthropology</td>
</tr>
<tr>
<td>3</td>
<td>Australian Ecosystems: Human Dimensions and Environmental Dynamics</td>
</tr>
<tr>
<td>3</td>
<td>Environmental Change and Emerging Infectious Diseases</td>
</tr>
<tr>
<td>3</td>
<td>Evolution and Conservation in Galapagos</td>
</tr>
<tr>
<td>3</td>
<td>Social and Environmental Sustainability: The Costa Rican Case</td>
</tr>
<tr>
<td>3</td>
<td>Indigenous Peoples and Environmental Problems</td>
</tr>
<tr>
<td>3</td>
<td>Political Ecology of Tropical Land Use: Conservation, Natural Resource Extraction, and Agribusiness</td>
</tr>
<tr>
<td>3</td>
<td>Australian Ecosystems: Human Dimensions and Environmental Dynamics</td>
</tr>
<tr>
<td>3</td>
<td>Environmental Change and Emerging Infectious Diseases</td>
</tr>
<tr>
<td>3</td>
<td>Evolution and Conservation in Galapagos</td>
</tr>
<tr>
<td>3</td>
<td>History of Anthropological Theory, Ecology and Environment</td>
</tr>
<tr>
<td>3</td>
<td>Anthropology of Environmental Conservation</td>
</tr>
<tr>
<td>3</td>
<td>EcoGroup: Current Topics in Ecological, Evolutionary, and Environmental Anthropology</td>
</tr>
<tr>
<td>3</td>
<td>Dynamics of Coupled Human-Natural Systems</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>BIOE 44</td>
<td>Fundamentals for Engineering Biology Lab</td>
</tr>
<tr>
<td>BIOE 80</td>
<td>Introduction to Bioengineering (Engineering Living Matter)</td>
</tr>
<tr>
<td>BIOE 191</td>
<td>Bioengineering Problems and Experimental Investigation</td>
</tr>
<tr>
<td>BIOE 459</td>
<td>Frontiers in Interdisciplinary Biosciences</td>
</tr>
<tr>
<td>BIOHOPK 43</td>
<td>Plant Biology, Evolution, and Ecology</td>
</tr>
<tr>
<td>BIOHOPK 150H</td>
<td>Ecological Mechanics</td>
</tr>
<tr>
<td>BIOHOPK 152H</td>
<td>Physiology of Global Change</td>
</tr>
<tr>
<td>BIOHOPK 153H</td>
<td>Current Topics and Concepts in Quantitative Fish Dynamics and Fisheries Management</td>
</tr>
<tr>
<td>BIOHOPK 155H</td>
<td>Developmental Biology and Evolution</td>
</tr>
<tr>
<td>BIOHOPK 160H</td>
<td>Developmental Biology in the Ocean: Diverse Embryonic & Larval Strategies of marine invertebrates</td>
</tr>
<tr>
<td>BIOHOPK 161H</td>
<td>Invertebrate Zoology</td>
</tr>
<tr>
<td>BIOHOPK 162H</td>
<td>Comparative Animal Physiology</td>
</tr>
<tr>
<td>BIOHOPK 163H</td>
<td>Oceanic Biology</td>
</tr>
<tr>
<td>BIOHOPK 166H</td>
<td>Molecular Ecology</td>
</tr>
<tr>
<td>BIOHOPK 167H</td>
<td>Nerve, Muscle, and Synapse</td>
</tr>
<tr>
<td>BIOHOPK 168H</td>
<td>Disease Ecology: from parasites evolution to the socio-economic impacts of pathogens on nations</td>
</tr>
<tr>
<td>BIOHOPK 172H</td>
<td>Marine Ecology: From Organisms to Ecosystems</td>
</tr>
<tr>
<td>BIOHOPK 173H</td>
<td>Marine Conservation Biology</td>
</tr>
<tr>
<td>BIOHOPK 174H</td>
<td>Experimental Design and Probability</td>
</tr>
<tr>
<td>BIOHOPK 177H</td>
<td>Dynamics and Management of Marine Populations</td>
</tr>
<tr>
<td>BIOHOPK 179H</td>
<td>Physiological Ecology of Marine Megafauna</td>
</tr>
<tr>
<td>BIOHOPK 181H</td>
<td>Physiology of Global Change</td>
</tr>
<tr>
<td>BIOHOPK 182H</td>
<td>Stanford at Sea</td>
</tr>
<tr>
<td>BIOHOPK 185H</td>
<td>Ecology and Conservation of Kelp Forest Communities</td>
</tr>
<tr>
<td>BIOHOPK 187H</td>
<td>Sensory Ecology</td>
</tr>
<tr>
<td>BIOHOPK 189H</td>
<td>Sustainability and Marine Ecosystems</td>
</tr>
<tr>
<td>BIOHOPK 198H</td>
<td>Directed Instruction or Reading</td>
</tr>
<tr>
<td>BIOHOPK 199H</td>
<td>Undergraduate Research</td>
</tr>
<tr>
<td>BIOHOPK 250H</td>
<td>Ecological Mechanics</td>
</tr>
<tr>
<td>BIOHOPK 252H</td>
<td>Physiology of Global Change</td>
</tr>
<tr>
<td>BIOHOPK 253H</td>
<td>Current Topics and Concepts in Quantitative Fish Dynamics and Fisheries Management</td>
</tr>
<tr>
<td>BIOHOPK 255H</td>
<td>Developmental Biology and Evolution</td>
</tr>
<tr>
<td>BIOHOPK 260H</td>
<td>Developmental Biology in the Ocean: Diverse Embryonic & Larval Strategies of marine invertebrates</td>
</tr>
<tr>
<td>BIOHOPK 261H</td>
<td>Invertebrate Zoology</td>
</tr>
<tr>
<td>BIOHOPK 262H</td>
<td>Comparative Animal Physiology</td>
</tr>
<tr>
<td>BIOHOPK 263H</td>
<td>Oceanic Biology</td>
</tr>
<tr>
<td>BIOHOPK 266H</td>
<td>Molecular Ecology</td>
</tr>
<tr>
<td>BIOHOPK 267H</td>
<td>Nerve, Muscle, and Synapse</td>
</tr>
<tr>
<td>BIOHOPK 268H</td>
<td>Disease Ecology: from parasites evolution to the socio-economic impacts of pathogens on nations</td>
</tr>
<tr>
<td>BIOHOPK 272H</td>
<td>Marine Ecology: From Organisms to Ecosystems</td>
</tr>
<tr>
<td>BIOHOPK 273H</td>
<td>Marine Conservation Biology</td>
</tr>
<tr>
<td>BIOHOPK 274</td>
<td>Hopkins Microbiology Course</td>
</tr>
<tr>
<td>BIOHOPK 274H</td>
<td>Experimental Design and Probability</td>
</tr>
<tr>
<td>BIOHOPK 275H</td>
<td>Synthesis in Ecology</td>
</tr>
<tr>
<td>BIOHOPK 276H</td>
<td>Estimates and Errors: The Theory of Scientific Measurement</td>
</tr>
<tr>
<td>BIOHOPK 277H</td>
<td>Dynamics and Management of Marine Populations</td>
</tr>
<tr>
<td>BIOHOPK 279H</td>
<td>Physiological Ecology of Marine Megafauna</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>BIOHOPK 280</td>
<td>Short Course on Ocean Policy</td>
</tr>
<tr>
<td>BIOHOPK 285</td>
<td>Ecology and Conservation of Kelp Forest Communities</td>
</tr>
<tr>
<td>BIOHOPK 287</td>
<td>Sensory Ecology</td>
</tr>
<tr>
<td>BIOHOPK 289</td>
<td>Sustainability and Marine Ecosystems</td>
</tr>
<tr>
<td>BIOHOPK 300</td>
<td>Research</td>
</tr>
<tr>
<td>BIOHOPK 320</td>
<td>Physical Biology</td>
</tr>
<tr>
<td>BIOHOPK 323</td>
<td>Stanford at Sea</td>
</tr>
<tr>
<td>BIOMEDIN 156</td>
<td>Economics of Health and Medical Care</td>
</tr>
<tr>
<td>BIOMEDIN 256</td>
<td>Economics of Health and Medical Care</td>
</tr>
<tr>
<td>CEE 1</td>
<td>Introduction to Environmental Systems Engineering</td>
</tr>
<tr>
<td>CEE 29N</td>
<td>Managing Natural Disaster Risk</td>
</tr>
<tr>
<td>CEE 50N</td>
<td>Multi-Disciplinary Perspectives on a Large Urban Estuary: San Francisco Bay</td>
</tr>
<tr>
<td>CEE 63</td>
<td>Weather and Storms</td>
</tr>
<tr>
<td>CEE 64</td>
<td>Air Pollution and Global Warming: History, Science, and Solutions</td>
</tr>
<tr>
<td>CEE 70</td>
<td>Environmental Science and Technology</td>
</tr>
<tr>
<td>CEE 70N</td>
<td>Water, Public Health, and Engineering</td>
</tr>
<tr>
<td>CEE 73</td>
<td>Water: An Introduction</td>
</tr>
<tr>
<td>CEE 100</td>
<td>Managing Sustainable Building Projects</td>
</tr>
<tr>
<td>CEE 101B</td>
<td>Mechanics of Fluids</td>
</tr>
<tr>
<td>CEE 101D</td>
<td>Computations in Civil and Environmental Engineering</td>
</tr>
<tr>
<td>CEE 107A</td>
<td>Understanding Energy</td>
</tr>
<tr>
<td>CEE 107S</td>
<td>Energy Resources: Fuels and Tools</td>
</tr>
<tr>
<td>CEE 112A</td>
<td>Industry Applications of Virtual Design & Construction</td>
</tr>
<tr>
<td>CEE 112B</td>
<td>Industry Applications of Virtual Design & Construction</td>
</tr>
<tr>
<td>CEE 112C</td>
<td>Industry Applications of Virtual Design & Construction</td>
</tr>
<tr>
<td>CEE 113</td>
<td>Patterns of Sustainability</td>
</tr>
<tr>
<td>CEE 124</td>
<td>Sustainable Development Studio</td>
</tr>
<tr>
<td>CEE 125</td>
<td>Defining Smart Cities: Visions of Urbanism for the 21st Century</td>
</tr>
<tr>
<td>CEE 126</td>
<td>International Urbanization Seminar: Cross-Cultural Collaboration for...</td>
</tr>
<tr>
<td>CEE 131B</td>
<td>Financial Management of Sustainable Urban Systems</td>
</tr>
<tr>
<td>CEE 151</td>
<td>Negotiation</td>
</tr>
<tr>
<td>CEE 155</td>
<td>Introduction to Sensing Networks for CEE</td>
</tr>
<tr>
<td>CEE 156</td>
<td>Building Systems</td>
</tr>
<tr>
<td>CEE 165C</td>
<td>Water Resources Management</td>
</tr>
<tr>
<td>CEE 166A</td>
<td>Watersheds and Wetlands</td>
</tr>
<tr>
<td>CEE 166B</td>
<td>Floods and Droughts, Dams and Aqueducts</td>
</tr>
<tr>
<td>CEE 166D</td>
<td>Water Resources and Water Hazards Field Trips</td>
</tr>
<tr>
<td>CEE 171</td>
<td>Environmental Planning Methods</td>
</tr>
<tr>
<td>CEE 171F</td>
<td>New Indicators of Well-Being and Sustainability</td>
</tr>
<tr>
<td>CEE 172</td>
<td>Air Quality Management</td>
</tr>
<tr>
<td>CEE 172A</td>
<td>Indoor Air Quality</td>
</tr>
<tr>
<td>CEE 174A</td>
<td>Providing Safe Water for the Developing and Developed World</td>
</tr>
<tr>
<td>CEE 174B</td>
<td>Wastewater Treatment: From Disposal to Resource Recovery</td>
</tr>
<tr>
<td>CEE 175A</td>
<td>California Coast: Science, Policy, and Law</td>
</tr>
<tr>
<td>CEE 175S</td>
<td>Environmental Entrepreneurship and Innovation</td>
</tr>
<tr>
<td>CEE 176A</td>
<td>Energy Efficient Buildings</td>
</tr>
<tr>
<td>CEE 176B</td>
<td>100% Clean, Renewable Energy and Storage for Everything</td>
</tr>
<tr>
<td>CEE 176C</td>
<td>Energy Storage Integration - Vehicles, Renewables, and the Grid</td>
</tr>
<tr>
<td>CEE 177</td>
<td>Aquatic Chemistry and Biology</td>
</tr>
<tr>
<td>CEE 177L</td>
<td>Smart Cities & Communities</td>
</tr>
<tr>
<td>CEE 177S</td>
<td>Design for a Sustainable World</td>
</tr>
<tr>
<td>CEE 177X</td>
<td>Current Topics in Sustainable Engineering</td>
</tr>
<tr>
<td>CEE 178</td>
<td>Introduction to Human World</td>
</tr>
<tr>
<td>CEE 179A</td>
<td>Water Chemistry Laboratory</td>
</tr>
<tr>
<td>CEE 179S</td>
<td>Seminar: Issues in Environmental Science, Technology and Sustainability</td>
</tr>
<tr>
<td>CEE 201D</td>
<td>Computations in Civil and Environmental Engineering</td>
</tr>
<tr>
<td>CEE 206</td>
<td>Decision Analysis for Civil and Environmental Engineers</td>
</tr>
<tr>
<td>CEE 207A</td>
<td>Understanding Energy</td>
</tr>
<tr>
<td>CEE 207S</td>
<td>Energy Resources: Fuels and Tools</td>
</tr>
<tr>
<td>CEE 213</td>
<td>Patterns of Sustainability</td>
</tr>
<tr>
<td>CEE 223</td>
<td>Materials for Sustainable Built Environments</td>
</tr>
<tr>
<td>CEE 224A</td>
<td>Sustainable Development Studio</td>
</tr>
<tr>
<td>CEE 225</td>
<td>Defining Smart Cities: Visions of Urbanism for the 21st Century</td>
</tr>
<tr>
<td>CEE 226</td>
<td>Life Cycle Assessment for Complex Systems</td>
</tr>
<tr>
<td>CEE 226E</td>
<td>Advanced Topics in Integrated, Energy-Efficient Building Design</td>
</tr>
<tr>
<td>CEE 227</td>
<td>Global Project Finance</td>
</tr>
<tr>
<td>CEE 251</td>
<td>Negotiation</td>
</tr>
<tr>
<td>CEE 255</td>
<td>Introduction to Sensing Networks for CEE</td>
</tr>
<tr>
<td>CEE 256</td>
<td>Building Systems</td>
</tr>
<tr>
<td>CEE 260A</td>
<td>Physical Hydrogeology</td>
</tr>
<tr>
<td>CEE 260C</td>
<td>Contaminant Hydrogeology and Reactive Transport</td>
</tr>
<tr>
<td>CEE 262A</td>
<td>Hydrodynamics</td>
</tr>
<tr>
<td>CEE 262B</td>
<td>Transport and Mixing in Surface Water Flows</td>
</tr>
<tr>
<td>CEE 262C</td>
<td>Modeling Environmental Flows</td>
</tr>
<tr>
<td>CEE 262D</td>
<td>Introduction to Physical Oceanography</td>
</tr>
<tr>
<td>CEE 262F</td>
<td>Ocean Waves</td>
</tr>
<tr>
<td>CEE 263A</td>
<td>Air Pollution Modeling</td>
</tr>
<tr>
<td>CEE 263B</td>
<td>Numerical Weather Prediction</td>
</tr>
<tr>
<td>CEE 263C</td>
<td>Weather and Storms</td>
</tr>
<tr>
<td>CEE 263D</td>
<td>Air Pollution and Global Warming: History, Science, and Solutions</td>
</tr>
<tr>
<td>CEE 263S</td>
<td>Atmosphere/Energy Seminar</td>
</tr>
<tr>
<td>CEE 265A</td>
<td>Sustainable Water Resources Development</td>
</tr>
<tr>
<td>CEE 265C</td>
<td>Water Resources Management</td>
</tr>
<tr>
<td>CEE 265D</td>
<td>Water and Sanitation in Developing Countries</td>
</tr>
<tr>
<td>CEE 266A</td>
<td>Watersheds and Wetlands</td>
</tr>
<tr>
<td>CEE 266B</td>
<td>Floods and Droughts, Dams and Aqueducts</td>
</tr>
<tr>
<td>CEE 266C</td>
<td>Dams, Reservoirs, and their Sustainability</td>
</tr>
<tr>
<td>CEE 266D</td>
<td>Water Resources and Water Hazards Field Trips</td>
</tr>
<tr>
<td>CEE 268</td>
<td>Groundwater Flow</td>
</tr>
<tr>
<td>CEE 269A</td>
<td>Environmental Engineering Seminar</td>
</tr>
<tr>
<td>CEE 269B</td>
<td>Environmental Engineering Seminar</td>
</tr>
<tr>
<td>CEE 269C</td>
<td>Environmental Engineering Seminar</td>
</tr>
<tr>
<td>CEE 270</td>
<td>Movement and Fate of Organic Contaminants in Waters</td>
</tr>
<tr>
<td>CEE 270B</td>
<td>Environmental Organic Reaction Chemistry</td>
</tr>
<tr>
<td>CEE 271A</td>
<td>Physical and Chemical Treatment Processes</td>
</tr>
<tr>
<td>CEE 271B</td>
<td>Environmental Biotechnology</td>
</tr>
<tr>
<td>CEE 271D</td>
<td>Introduction to Wastewater Treatment Process Modeling</td>
</tr>
<tr>
<td>CEE 271F</td>
<td>New Indicators of Well-Being and Sustainability</td>
</tr>
<tr>
<td>CEE 272</td>
<td>Coastal Contaminants</td>
</tr>
<tr>
<td>CEE 272R</td>
<td>Modern Power Systems Engineering</td>
</tr>
<tr>
<td>CEE 272T</td>
<td>SmartGrids and Advanced Power Systems Seminar</td>
</tr>
<tr>
<td>CEE 273</td>
<td>Aquatic Chemistry</td>
</tr>
<tr>
<td>CEE 273A</td>
<td>Water Chemistry Laboratory</td>
</tr>
<tr>
<td>CEE 274A</td>
<td>Environmental Microbiology I</td>
</tr>
<tr>
<td>CEE 274B</td>
<td>Microbial Bioenergy Systems</td>
</tr>
<tr>
<td>CEE 274D</td>
<td>Pathogens and Disinfection</td>
</tr>
<tr>
<td>CEE 274P</td>
<td>Environmental Health Microbiology Lab</td>
</tr>
<tr>
<td>CEE 274S</td>
<td>Hopkins Microbiology Course</td>
</tr>
<tr>
<td>CEE 275A</td>
<td>California Coast: Science, Policy, and Law</td>
</tr>
<tr>
<td>CEE 275K</td>
<td>The Practice of Environmental Consulting</td>
</tr>
<tr>
<td>CEE 275S</td>
<td>Environmental Entrepreneurship and Innovation</td>
</tr>
<tr>
<td>CEE 276</td>
<td>Introduction to Human Exposure Analysis</td>
</tr>
<tr>
<td>CEE 276C</td>
<td>Energy Storage Integration - Vehicles, Renewables, and the Grid</td>
</tr>
<tr>
<td>CEE 277F</td>
<td>Advanced Field Methods in Water, Health and Development</td>
</tr>
<tr>
<td>CEE 277L</td>
<td>Smart Cities & Communities</td>
</tr>
<tr>
<td>CEE 277S</td>
<td>Design for a Sustainable World</td>
</tr>
<tr>
<td>CEE 277X</td>
<td>Current Topics in Sustainable Engineering</td>
</tr>
<tr>
<td>CEE 278A</td>
<td>Air Pollution Fundamentals</td>
</tr>
<tr>
<td>CEE 278C</td>
<td>Indoor Air Quality</td>
</tr>
<tr>
<td>CEE 279S</td>
<td>Seminar: Issues in Environmental Science, Technology and Sustainability</td>
</tr>
<tr>
<td>CEE 287</td>
<td>Earthquake Resistant Design and Construction</td>
</tr>
<tr>
<td>CEE 288</td>
<td>Introduction to Performance Based Earthquake Engineering</td>
</tr>
<tr>
<td>CEE 293</td>
<td>Foundations and Earth Structures</td>
</tr>
<tr>
<td>CEE 301</td>
<td>The Energy Seminar</td>
</tr>
<tr>
<td>CEE 316</td>
<td>Sustainable Built Environment Research</td>
</tr>
<tr>
<td>CEE 363F</td>
<td>Oceanic Fluid Dynamics</td>
</tr>
<tr>
<td>CEE 363G</td>
<td>Field Techniques in Coastal Oceanography</td>
</tr>
<tr>
<td>CEE 365A</td>
<td>Advanced Topics in Environmental Fluid Mechanics and Hydrology</td>
</tr>
<tr>
<td>CEE 365B</td>
<td>Advanced Topics in Environmental Fluid Mechanics and Hydrology</td>
</tr>
<tr>
<td>CEE 365C</td>
<td>Advanced Topics in Environmental Fluid Mechanics and Hydrology</td>
</tr>
<tr>
<td>CEE 365D</td>
<td>Advanced Topics in Environmental Fluid Mechanics and Hydrology</td>
</tr>
<tr>
<td>CEE 370A</td>
<td>Environmental Research</td>
</tr>
<tr>
<td>CEE 370B</td>
<td>Environmental Research</td>
</tr>
<tr>
<td>CEE 370C</td>
<td>Environmental Research</td>
</tr>
<tr>
<td>CEE 370D</td>
<td>Environmental Research</td>
</tr>
<tr>
<td>CEE 374A</td>
<td>Introduction to Physiology of Microbes in Biofilms</td>
</tr>
<tr>
<td>CEE 374B</td>
<td>Introduction to Physiology of Microbes in Biofilms</td>
</tr>
<tr>
<td>CEE 374C</td>
<td>Introduction to Physiology of Microbes in Biofilms</td>
</tr>
<tr>
<td>CEE 374D</td>
<td>Introduction to Physiology of Microbes in Biofilms</td>
</tr>
<tr>
<td>CEE 374S</td>
<td>Advanced Topics in Microbial Pollution</td>
</tr>
<tr>
<td>CEE 374T</td>
<td>Advanced Topics in Coastal Pollution</td>
</tr>
<tr>
<td>CEE 374U</td>
<td>Advanced Topics in Submarine Groundwater Discharge</td>
</tr>
<tr>
<td>CEE 374V</td>
<td>Advanced Topics in Microbial Source Tracking</td>
</tr>
<tr>
<td>CEE 374W</td>
<td>Advanced Topics in Water, Health and Development</td>
</tr>
<tr>
<td>CEE 377</td>
<td>Research Proposal Writing in Environmental Engineering and Science</td>
</tr>
<tr>
<td>CEE 385</td>
<td>Performance-Based Earthquake Engineering</td>
</tr>
<tr>
<td>CHEM 10</td>
<td>Exploring Research and Problem Solving Across the Sciences</td>
</tr>
<tr>
<td>CHEM 25N</td>
<td>Science in the News</td>
</tr>
<tr>
<td>CHEM 28N</td>
<td>Science Innovation and Communication</td>
</tr>
<tr>
<td>CHEM 459</td>
<td>Frontiers in Interdisciplinary Biosciences</td>
</tr>
<tr>
<td>CHEMENG 25E</td>
<td>Energy: Chemical Transformations for Production, Storage, and Use</td>
</tr>
<tr>
<td>CHEMENG 60Q</td>
<td>Environmental Regulation and Policy</td>
</tr>
<tr>
<td>CHEMENG 70Q</td>
<td>Masters of Disaster</td>
</tr>
<tr>
<td>CHEMENG 162</td>
<td>Polymers for Clean Energy and Water</td>
</tr>
<tr>
<td>CHEMENG 174</td>
<td>Environmental Microbiology I</td>
</tr>
<tr>
<td>CHEMENG 262</td>
<td>Polymers for Clean Energy and Water</td>
</tr>
<tr>
<td>CHEMENG 274</td>
<td>Environmental Microbiology I</td>
</tr>
<tr>
<td>CHEMENG 432</td>
<td>Electrochemical Energy Conversion</td>
</tr>
<tr>
<td>CHEMENG 456</td>
<td>Microbial Bioenergy Systems</td>
</tr>
<tr>
<td>CHEMENG 459</td>
<td>Frontiers in Interdisciplinary Biosciences</td>
</tr>
<tr>
<td>CLASSICS 358</td>
<td>The Archaeology of Ancient Mediterranean Environments</td>
</tr>
<tr>
<td>CME 211</td>
<td>Software Development for Scientists and Engineers</td>
</tr>
<tr>
<td>COMM 1B</td>
<td>Media, Culture, and Society</td>
</tr>
<tr>
<td>COMM 104W</td>
<td>Reporting, Writing, and Understanding the News</td>
</tr>
<tr>
<td>COMM 108</td>
<td>Media Processes and Effects</td>
</tr>
<tr>
<td>COMM 172</td>
<td>Media Psychology</td>
</tr>
<tr>
<td>COMM 177C</td>
<td>Specialized Writing and Reporting: Environmental and Food System Journalism</td>
</tr>
<tr>
<td>COMM 272</td>
<td>Media Psychology</td>
</tr>
<tr>
<td>COMM 277C</td>
<td>Specialized Writing and Reporting: Environmental and Food System Journalism</td>
</tr>
<tr>
<td>COMPMED 84Q</td>
<td>Globally Emerging Zoonotic Diseases</td>
</tr>
<tr>
<td>CSRE 109A</td>
<td>Federal Indian Law</td>
</tr>
<tr>
<td>CSRE 109B</td>
<td>Native Nation Building</td>
</tr>
<tr>
<td>CSRE 156J</td>
<td>Environment, Nature and Race</td>
</tr>
<tr>
<td>CSRE 178</td>
<td>Ethics and Politics of Public Service</td>
</tr>
<tr>
<td>CSRE 187A</td>
<td>The Anthropology of Race, Nature, and Animality</td>
</tr>
<tr>
<td>EARTH 1A</td>
<td>Know Your Planet: Research Frontiers</td>
</tr>
<tr>
<td>EARTH 1B</td>
<td>Know Your Planet: Big Earth</td>
</tr>
<tr>
<td>EARTH 1C</td>
<td>Know Your Planet: Science Outside</td>
</tr>
<tr>
<td>EARTH 2</td>
<td>Climate and Society</td>
</tr>
<tr>
<td>EARTH 5</td>
<td>Geokids: Earth Sciences Education</td>
</tr>
<tr>
<td>EARTH 14</td>
<td>Our National Parks</td>
</tr>
<tr>
<td>EARTH 15</td>
<td>Living on the Edge</td>
</tr>
<tr>
<td>EARTH 42</td>
<td>Landscapes and Tectonics of the San Francisco Bay Area</td>
</tr>
<tr>
<td>EARTH 100</td>
<td>Research Preparation for Undergraduates</td>
</tr>
<tr>
<td>EARTH 114A</td>
<td>Our National Parks</td>
</tr>
<tr>
<td>EARTH 117</td>
<td>Earth Sciences of the Hawaiian Islands</td>
</tr>
<tr>
<td>EARTH 126X</td>
<td>Hard Earth: Stanford Graduate-Student Talks Exploring Tough Environmental Dilemmas</td>
</tr>
<tr>
<td>EARTH 126Y</td>
<td>Hard Earth: Stanford Graduate-Student Talks Exploring Tough Environmental Dilemmas</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>EARTH 131</td>
<td>Paths in Sustainability Careers</td>
</tr>
<tr>
<td>EARTH 191</td>
<td>Stanford EARTH Field Courses</td>
</tr>
<tr>
<td>EARTH 193</td>
<td>Natural Perspectives: Geology, Environment, and Art</td>
</tr>
<tr>
<td>EARTH 202</td>
<td>PhD Students on the PhD</td>
</tr>
<tr>
<td>EARTH 214</td>
<td>Software Design in Modern Fortran for Scientists and Engineers</td>
</tr>
<tr>
<td>EARTH 218</td>
<td>Communicating Science</td>
</tr>
<tr>
<td>EARTH 219</td>
<td>OPINION WRITING IN THE SCIENCES</td>
</tr>
<tr>
<td>EARTH 251</td>
<td>Negotiation</td>
</tr>
<tr>
<td>EARTH 310</td>
<td>Computational Geosciences Seminar</td>
</tr>
<tr>
<td>EARTHSYS 4</td>
<td>Coevolution of Earth and Life</td>
</tr>
<tr>
<td>EARTHSYS 8</td>
<td>The Oceans: An Introduction to the Marine Environment</td>
</tr>
<tr>
<td>EARTHSYS 9</td>
<td>Public Service Internship Preparation</td>
</tr>
<tr>
<td>EARTHSYS 10</td>
<td>Introduction to Earth Systems</td>
</tr>
<tr>
<td>EARTHSYS 18</td>
<td>Promoting Sustainability Behavior Change at Stanford</td>
</tr>
<tr>
<td>EARTHSYS 36A</td>
<td>Life at the Extremes: From the Deep Sea to Deep Space</td>
</tr>
<tr>
<td>EARTHSYS 41N</td>
<td>The Global Warming Paradox</td>
</tr>
<tr>
<td>EARTHSYS 42</td>
<td>The Global Warming Paradox II</td>
</tr>
<tr>
<td>EARTHSYS 44N</td>
<td>The Invisible Majority: The Microbial World That Sustains Our Planet</td>
</tr>
<tr>
<td>EARTHSYS 46H</td>
<td>Exploring the Critical Interface between the Land and Monterey Bay: Elkhorn Slough</td>
</tr>
<tr>
<td>EARTHSYS 46P</td>
<td>Environmental Impact of Energy Systems: What are the Risks?</td>
</tr>
<tr>
<td>EARTHSYS 49H</td>
<td>Multi-Disciplinary Perspectives on a Large Urban Estuary: San Francisco Bay</td>
</tr>
<tr>
<td>EARTHSYS 56Q</td>
<td>Changes in the Coastal Ocean: The View From Monterey and San Francisco Bays</td>
</tr>
<tr>
<td>EARTHSYS 57C</td>
<td>Climate Change from the Past to the Future</td>
</tr>
<tr>
<td>EARTHSYS 61O</td>
<td>Food and security</td>
</tr>
<tr>
<td>EARTHSYS 100</td>
<td>Environmental and Geological Field Studies in the Rocky Mountains</td>
</tr>
<tr>
<td>EARTHSYS 101</td>
<td>Energy and the Environment</td>
</tr>
<tr>
<td>EARTHSYS 102</td>
<td>Fundamentals of Renewable Power</td>
</tr>
<tr>
<td>EARTHSYS 103</td>
<td>Understanding Energy</td>
</tr>
<tr>
<td>EARTHSYS 104</td>
<td>The Water Course</td>
</tr>
<tr>
<td>EARTHSYS 105</td>
<td>Food and Community: Food Security, Resilience and Equity</td>
</tr>
<tr>
<td>EARTHSYS 105</td>
<td>Ecology and Natural History of Jasper Ridge Biological Preserve</td>
</tr>
<tr>
<td>EARTHSYS 105</td>
<td>Ecology and Natural History of Jasper Ridge Biological Preserve</td>
</tr>
<tr>
<td>EARTHSYS 106</td>
<td>World Food Economy</td>
</tr>
<tr>
<td>EARTHSYS 107</td>
<td>Control of Nature</td>
</tr>
<tr>
<td>EARTHSYS 110</td>
<td>Introduction to the foundations of contemporary geophysics</td>
</tr>
<tr>
<td>EARTHSYS 111</td>
<td>Biology and Global Change</td>
</tr>
<tr>
<td>EARTHSYS 112</td>
<td>Human Society and Environmental Change</td>
</tr>
<tr>
<td>EARTHSYS 113</td>
<td>Earthquakes and Volcanoes</td>
</tr>
<tr>
<td>EARTHSYS 115</td>
<td>Wetlands Ecology of the Pantanal Prefield Seminar</td>
</tr>
<tr>
<td>EARTHSYS 115</td>
<td>Island Biogeography of Tasmania Prefield Seminar</td>
</tr>
<tr>
<td>EARTHSYS 116</td>
<td>Ecology of the Hawaiian Islands</td>
</tr>
<tr>
<td>EARTHSYS 117</td>
<td>Earth Sciences of the Hawaiian Islands</td>
</tr>
<tr>
<td>EARTHSYS 118</td>
<td>Heritage, Environment, and Sovereignty in Hawaii</td>
</tr>
<tr>
<td>EARTHSYS 119</td>
<td>Will Work for Food</td>
</tr>
<tr>
<td>EARTHSYS 121</td>
<td>Building a Sustainable Society: New Approaches for Integrating Human and Environmental Priorities</td>
</tr>
<tr>
<td>EARTHSYS 122</td>
<td>Evolution of Marine Ecosystems</td>
</tr>
<tr>
<td>EARTHSYS 125</td>
<td>Shades of Green: Redesigning and Rethinking the Environmental Justice Movements</td>
</tr>
<tr>
<td>EARTHSYS 128</td>
<td>Evolution of Terrestrial Ecosystems</td>
</tr>
<tr>
<td>EARTHSYS 129</td>
<td>Geographic Information Science (GIS)</td>
</tr>
<tr>
<td>EARTHSYS 146</td>
<td>Atmosphere, Ocean, and Climate Dynamics: The Atmospheric Circulation</td>
</tr>
<tr>
<td>EARTHSYS 146</td>
<td>Atmosphere, Ocean, and Climate Dynamics: the Ocean Circulation</td>
</tr>
<tr>
<td>EARTHSYS 148</td>
<td>Grow it, Cook it, Eat it. An Experiential Exploration of How and Why We Eat What We Eat</td>
</tr>
<tr>
<td>EARTHSYS 149</td>
<td>Wild Writing</td>
</tr>
<tr>
<td>EARTHSYS 151</td>
<td>Biological Oceanography</td>
</tr>
<tr>
<td>EARTHSYS 152</td>
<td>Marine Chemistry</td>
</tr>
<tr>
<td>EARTHSYS 155</td>
<td>Science of Soils</td>
</tr>
<tr>
<td>EARTHSYS 158</td>
<td>Geomicrobiology</td>
</tr>
<tr>
<td>EARTHSYS 160</td>
<td>Sustainable Cities</td>
</tr>
<tr>
<td>EARTHSYS 164</td>
<td>Introduction to Physical Oceanography</td>
</tr>
<tr>
<td>EARTHSYS 170</td>
<td>Environmental Geochemistry</td>
</tr>
<tr>
<td>EARTHSYS 172</td>
<td>Australian Ecosystems: Human Dimensions and Environmental Dynamics</td>
</tr>
<tr>
<td>EARTHSYS 176</td>
<td>Open Space Management Practicum</td>
</tr>
<tr>
<td>EARTHSYS 176</td>
<td>Open Space Practicum Independent Study</td>
</tr>
<tr>
<td>EARTHSYS 177</td>
<td>Specialized Writing and Reporting: Environmental and Food System Journalism</td>
</tr>
<tr>
<td>EARTHSYS 179</td>
<td>Seminar: Issues in Environmental Science, Technology and Sustainability</td>
</tr>
<tr>
<td>EARTHSYS 180</td>
<td>Principles and Practices of Sustainable Agriculture</td>
</tr>
<tr>
<td>EARTHSYS 181</td>
<td>Urban Agriculture in the Developing World</td>
</tr>
<tr>
<td>EARTHSYS 185</td>
<td>Feeding Nine Billion</td>
</tr>
<tr>
<td>EARTHSYS 186</td>
<td>Farm and Garden Environmental Education Practicum</td>
</tr>
<tr>
<td>EARTHSYS 187</td>
<td>FEED the Change: Redesigning Food Systems</td>
</tr>
<tr>
<td>EARTHSYS 188</td>
<td>Social and Environmental Tradeoffs in Climate Decision-Making</td>
</tr>
<tr>
<td>EARTHSYS 191</td>
<td>Concepts in Environmental Communication</td>
</tr>
<tr>
<td>EARTHSYS 199</td>
<td>Honors Program in Earth Systems</td>
</tr>
<tr>
<td>EARTHSYS 200</td>
<td>Environmental Communication in Action: The SAGE Project</td>
</tr>
<tr>
<td>EARTHSYS 201</td>
<td>Editing for Publication</td>
</tr>
<tr>
<td>EARTHSYS 206</td>
<td>World Food Economy</td>
</tr>
<tr>
<td>EARTHSYS 207</td>
<td>Spanish in Science/Science in Spanish</td>
</tr>
<tr>
<td>EARTHSYS 210</td>
<td>Senior Capstone and Reflection</td>
</tr>
<tr>
<td>EARTHSYS 210</td>
<td>Senior Capstone and Reflection</td>
</tr>
<tr>
<td>EARTHSYS 210</td>
<td>Earth Systems Capstone Project</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>ENERGY 167</td>
<td>Engineering Valuation and Appraisal of Oil and Gas Wells, Facilities, and Properties</td>
</tr>
<tr>
<td>ENERGY 171</td>
<td>Energy Infrastructure, Technology and Economics</td>
</tr>
<tr>
<td>ENERGY 175</td>
<td>Well Test Analysis</td>
</tr>
<tr>
<td>ENERGY 191</td>
<td>Optimization of Energy Systems</td>
</tr>
<tr>
<td>ENERGY 192</td>
<td>Undergraduate Teaching Experience</td>
</tr>
<tr>
<td>ENERGY 193</td>
<td>Undergraduate Research Problems</td>
</tr>
<tr>
<td>ENERGY 194</td>
<td>Special Topics in Energy and Mineral Fluids</td>
</tr>
<tr>
<td>ENERGY 199</td>
<td>Senior Project and Seminar in Energy Resources</td>
</tr>
<tr>
<td>ENERGY 201</td>
<td>Laboratory Measurement of Reservoir Rock Properties</td>
</tr>
<tr>
<td>ENERGY 203</td>
<td>The Energy Transformation Collaborative</td>
</tr>
<tr>
<td>ENERGY 214</td>
<td>The Global Price of Oil</td>
</tr>
<tr>
<td>ENERGY 216</td>
<td>Entrepreneurship in Energy</td>
</tr>
<tr>
<td>ENERGY 217</td>
<td>Research Seminar: Energy Development in the Emerging Economy</td>
</tr>
<tr>
<td>ENERGY 221</td>
<td>Fundamentals of Multiphase Flow</td>
</tr>
<tr>
<td>ENERGY 222</td>
<td>Advanced Reservoir Engineering</td>
</tr>
<tr>
<td>ENERGY 223</td>
<td>Reservoir Simulation</td>
</tr>
<tr>
<td>ENERGY 224</td>
<td>Advanced Reservoir Simulation</td>
</tr>
<tr>
<td>ENERGY 225</td>
<td>Theory of Gas Injection Processes</td>
</tr>
<tr>
<td>ENERGY 227</td>
<td>Enhanced Oil Recovery</td>
</tr>
<tr>
<td>ENERGY 230</td>
<td>Advanced Topics in Well Logging</td>
</tr>
<tr>
<td>ENERGY 240</td>
<td>Data science for geoscience</td>
</tr>
<tr>
<td>ENERGY 241</td>
<td>Seismic Reservoir Characterization</td>
</tr>
<tr>
<td>ENERGY 246</td>
<td>Reservoir Characterization and Flow Modeling with Outcrop Data</td>
</tr>
<tr>
<td>ENERGY 251</td>
<td>Thermodynamics of Equilibria</td>
</tr>
<tr>
<td>ENERGY 253</td>
<td>Carbon Capture and Sequestration</td>
</tr>
<tr>
<td>ENERGY 260</td>
<td>Uncertainty Quantification in Data-Centric Simulations</td>
</tr>
<tr>
<td>ENERGY 267</td>
<td>Engineering Valuation and Appraisal of Oil and Gas Wells, Facilities, and Properties</td>
</tr>
<tr>
<td>ENERGY 269</td>
<td>Geothermal Reservoir Engineering</td>
</tr>
<tr>
<td>ENERGY 271</td>
<td>Energy Infrastructure, Technology and Economics</td>
</tr>
<tr>
<td>ENERGY 273</td>
<td>Special Topics in Energy Resources Engineering</td>
</tr>
<tr>
<td>ENERGY 274</td>
<td>Complex Analysis for Practical Engineering</td>
</tr>
<tr>
<td>ENERGY 275</td>
<td>Quantitative Methods in Basin and Petroleum System Modeling</td>
</tr>
<tr>
<td>ENERGY 291</td>
<td>Optimization of Energy Systems</td>
</tr>
<tr>
<td>ENERGY 293B</td>
<td>Fundamentals of Energy Processes</td>
</tr>
<tr>
<td>ENERGY 293C</td>
<td>Energy from Wind and Water Currents</td>
</tr>
<tr>
<td>ENERGY 301</td>
<td>The Energy Seminar</td>
</tr>
<tr>
<td>ENERGY 359</td>
<td>Teaching Experience in Energy Resources Engineering</td>
</tr>
<tr>
<td>ENERGY 360</td>
<td>Advanced Research Work in Energy Resources Engineering</td>
</tr>
<tr>
<td>ENERGY 361</td>
<td>Master's Degree Research in Energy Resources Engineering</td>
</tr>
<tr>
<td>ENGLISH 124</td>
<td>The American West</td>
</tr>
<tr>
<td>ENGR 25E</td>
<td>Energy: Chemical Transformations for Production, Storage, and Use</td>
</tr>
<tr>
<td>ENGR 90</td>
<td>Environmental Science and Technology</td>
</tr>
<tr>
<td>ENGR 120</td>
<td>Fundamentals of Petroleum Engineering</td>
</tr>
<tr>
<td>ENVRES 220</td>
<td>The Social Ocean: Ocean Conservation, Management, and Policy</td>
</tr>
<tr>
<td>ENVRES 221</td>
<td>New Frontiers and Opportunities in Sustainability</td>
</tr>
<tr>
<td>ENVRES 225</td>
<td>E-IPER Current Topics Seminar</td>
</tr>
<tr>
<td>ENVRES 230</td>
<td>Field Survey Data Collection & Analysis</td>
</tr>
<tr>
<td>ENVRES 240</td>
<td>Environmental Decision-Making and Risk Perception</td>
</tr>
<tr>
<td>ENVRES 250</td>
<td>Environmental Governance</td>
</tr>
<tr>
<td>ENVRES 270</td>
<td>Graduate Practicum in Environment and Resources</td>
</tr>
<tr>
<td>ENVRES 276</td>
<td>Water Resources: Culture and Context</td>
</tr>
<tr>
<td>ENVRES 280</td>
<td>Topics in Environment and Resources</td>
</tr>
<tr>
<td>ENVRES 290</td>
<td>Capstone Project Seminar in Environment and Resources</td>
</tr>
<tr>
<td>ENVRES 300</td>
<td>Introduction to Resource, Energy and Environmental Economics</td>
</tr>
<tr>
<td>ENVRES 315</td>
<td>Environmental Research Design Seminar</td>
</tr>
<tr>
<td>ENVRES 320</td>
<td>Designing Environmental Research</td>
</tr>
<tr>
<td>ENVRES 330</td>
<td>Research Approaches for Environmental Problem Solving</td>
</tr>
<tr>
<td>ENVRES 380</td>
<td>Innovating Large Scale Sustainable Transformations</td>
</tr>
<tr>
<td>ENVRES 398</td>
<td>Directed Reading in Environment and Resources</td>
</tr>
<tr>
<td>ENVRES 399</td>
<td>Directed Research in Environment and Resources</td>
</tr>
<tr>
<td>ENVRINST 198</td>
<td>Prehonors Seminar</td>
</tr>
<tr>
<td>ENVRINST 199</td>
<td>Interschool Honors Program in Environmental Science, Technology, and Policy</td>
</tr>
<tr>
<td>ESS 8</td>
<td>The Oceans: An Introduction to the Marine Environment</td>
</tr>
<tr>
<td>ESS 10SC</td>
<td>In the Age of the Anthropocene: Coupled-Human Natural Systems of Southeast Alaska</td>
</tr>
<tr>
<td>ESS 46N</td>
<td>Exploring the Critical Interface between the Land and Monterey Bay: Elkhorn Slough</td>
</tr>
<tr>
<td>ESS 49N</td>
<td>Multi-Disciplinary Perspectives on a Large Urban Estuary San Francisco Bay</td>
</tr>
<tr>
<td>ESS 56Q</td>
<td>Changes in the Coastal Ocean: The View From Monterey and San Francisco Bays</td>
</tr>
<tr>
<td>ESS 57Q</td>
<td>Climate Change from the Past to the Future</td>
</tr>
<tr>
<td>ESS 61Q</td>
<td>Food and security</td>
</tr>
<tr>
<td>ESS 101</td>
<td>Environmental and Geological Field Studies in the Rocky Mountains</td>
</tr>
<tr>
<td>ESS 106</td>
<td>World Food Economy</td>
</tr>
<tr>
<td>ESS 107</td>
<td>Control of Nature</td>
</tr>
<tr>
<td>ESS 111</td>
<td>Biology and Global Change</td>
</tr>
<tr>
<td>ESS 112</td>
<td>Human Society and Environmental Change</td>
</tr>
<tr>
<td>ESS 117</td>
<td>Earth Sciences of the Hawaiian Islands</td>
</tr>
<tr>
<td>ESS 118</td>
<td>Disasters, Decisions, Development in Sustainable Urban Systems</td>
</tr>
<tr>
<td>ESS 132</td>
<td>Evolution of Earth Systems</td>
</tr>
<tr>
<td>ESS 135</td>
<td>Community Leadership</td>
</tr>
<tr>
<td>ESS 141</td>
<td>Remote Sensing of the Oceans</td>
</tr>
<tr>
<td>ESS 148</td>
<td>Introduction to Physical Oceanography</td>
</tr>
<tr>
<td>ESS 151</td>
<td>Biological Oceanography</td>
</tr>
<tr>
<td>ESS 152</td>
<td>Marine Chemistry</td>
</tr>
<tr>
<td>ESS 155</td>
<td>Science of Soils</td>
</tr>
<tr>
<td>ESS 158</td>
<td>Geomicrobiology</td>
</tr>
<tr>
<td>ESS 162</td>
<td>Remote Sensing of Land</td>
</tr>
<tr>
<td>ESS 164</td>
<td>Fundamentals of Geographic Information Science (GIS)</td>
</tr>
<tr>
<td>ESS 165</td>
<td>Advanced Geographic Information Systems</td>
</tr>
<tr>
<td>ESS 179S</td>
<td>Seminar: Issues in Environmental Science, Technology and Sustainability</td>
</tr>
<tr>
<td>ESS 206</td>
<td>World Food Economy</td>
</tr>
<tr>
<td>ESS 208</td>
<td>Topics in Geobiology</td>
</tr>
</tbody>
</table>
ESS 210 Techniques in Environmental Microbiology
ESS 211 Fundamentals of Modeling
ESS 212 Measurements in Earth Systems
ESS 214 Introduction to geostatistics and modeling of spatial uncertainty
ESS 218 Disasters, Decisions, Development in Sustainable Urban Systems
ESS 220 Physical Hydrogeology
ESS 221 Contaminant Hydrogeology and Reactive Transport
ESS 232 Evolution of Earth Systems
ESS 240 Advanced Oceanography
ESS 241 Remote Sensing of the Oceans
ESS 242 Antarctic Marine Geology and Geophysics
ESS 244 Marine Ecosystem Modeling
ESS 246A Atmosphere, Ocean, and Climate Dynamics: The Atmospheric Circulation
ESS 246B Atmosphere, Ocean, and Climate Dynamics: the Ocean Circulation
ESS 249 Marine Stable Isotopes
ESS 251 Biological Oceanography
ESS 252 Marine Chemistry
ESS 253S Hopkins Microbiology Course
ESS 255 Microbial Physiology
ESS 256 Soil and Water Chemistry
ESS 258 Geomicrobiology
ESS 259 Environmental Microbial Genomics
ESS 260 Advanced Statistical Methods for Earth System Analysis
ESS 261 Molecular Microbial Biosignatures
ESS 262 Remote Sensing of Land
ESS 265 Advanced Geographic Information Systems
ESS 270 Analyzing land use in a globalized world
ESS 280 Principles and Practices of Sustainable Agriculture
ESS 282 Designing Educational Gardens
ESS 292 Directed Individual Study in Earth System Science
ESS 300 Climate studies of terrestrial environments
ESS 301 Topics in Earth System Science
ESS 305 Climate Change: An Earth Systems Perspective
ESS 306 From Freshwater to Oceans to Land Systems: An Earth System Perspective to Global Challenges
ESS 307 Research Proposal Development and Delivery
ESS 322B Seminar in Hydrology
ESS 323 Stanford at Sea
ESS 330 Advanced Topics in Hydrogeology
ESS 360 Social Structure and Social Networks
ESS 363 Demography and Life History Theory
ESS 363F Oceanic Fluid Dynamics
ESS 385 Practical Experience in the Geosciences
ESS 400 Graduate Research
ETHICSOC 133 Ethics and Politics of Public Service
ETHICSOC 136 Introduction to Global Justice
ETHICSOC 178 Introduction to Environmental Ethics
ETHICSOC 180 The Ethics and Politics of Collective Action
ETHICSOC 185 Contemporary Moral Problems
ETHICSOC 278 Introduction to Environmental Ethics
FEMGEN 129 Critical Issues in International Women’s Health
GEOPHYS 20N Predicting Volcanic Eruptions
GEOPHYS 60N Man versus Nature: Coping with Disasters Using Space Technology
GEOPHYS 70 The Water Course
GEOPHYS 80 The Energy-Water Nexus
GEOPHYS 90 Earthquakes and Volcanoes
GEOPHYS 110 Introduction to the foundations of contemporary geophysics
GEOPHYS 112 Exploring Geosciences with MATLAB
GEOPHYS 120 Ice, Water, Fire
GEOPHYS 130 Introductory Seismology
GEOPHYS 141 Remote Sensing of the Oceans
GEOPHYS 150 Geodynamics: Our Dynamic Earth
GEOPHYS 160 D’3: Disasters, Decisions, Development
GEOPHYS 162 Laboratory Methods in Geophysics
GEOPHYS 181 Fluids and Flow in the Earth: Computational Methods
GEOPHYS 182 Reflection Seismology
GEOPHYS 183 Reflection Seismology Interpretation
GEOPHYS 184 Journey to the Center of the Earth
GEOPHYS 185 Rock Physics for Reservoir Characterization
GEOPHYS 186 Tectonophysics
GEOPHYS 190 Near-Surface Geophysics
GEOPHYS 191 Observing Freshwater
GEOPHYS 196 Undergraduate Research in Geophysics
GEOPHYS 201 Frontiers of Geophysical Research at Stanford
GEOPHYS 202 Reservoir Geomechanics
GEOPHYS 203 Fluids and Flow in the Earth: Computational Methods
GEOPHYS 205 Effective Scientific Presentation and Public Speaking
GEOPHYS 208 Unconventional Reservoir Geomechanics
GEOPHYS 210 Basic Earth Imaging
GEOPHYS 211 Environmental Soundings Image Estimation
GEOPHYS 212 Topics in Climate Change
GEOPHYS 217 Numerical Methods in Engineering and Applied Sciences
GEOPHYS 220 Ice, Water, Fire
GEOPHYS 222 Reflection Seismology
GEOPHYS 223 Reflection Seismology Interpretation
GEOPHYS 224 Seismic Reflection Processing
GEOPHYS 229 Earthquake Rupture Dynamics
GEOPHYS 235 Waves and Fields in Geophysics
GEOPHYS 240 Borehole Seismic Modeling and Imaging
GEOPHYS 241 Seismic Reservoir Characterization
GEOPHYS 255 Report on Energy Industry Training
GEOPHYS 257 Introduction to Computational Earth Sciences
GEOPHYS 259 Laboratory Methods in Geophysics
GEOPHYS 260 Rock Physics for Reservoir Characterization
GEOPHYS 262 Rock Physics
GEOPHYS 265 Imaging Radar and Applications
GEOPHYS 270 Electromagnetic Properties of Geological Materials
GEOPHYS 280 3-D Seismic Imaging
GEOPHYS 281 Geophysical Inverse Problems
GEOPHYS 284 Hydrogeophysics
GEOPHYS 287 Earthquake Seismology
GEOPHYS 288 Crustal Deformation
GEOPHYS 288C Crustal Deformation
GEOPHYS 289 Global Positioning System in Earth Sciences
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOPHYS 290</td>
<td>Tectonophysics</td>
</tr>
<tr>
<td>GEOPHYS 385A</td>
<td>Reflection Seismology</td>
</tr>
<tr>
<td>GEOPHYS 385B</td>
<td>Environmental Geophysics</td>
</tr>
<tr>
<td>GEOPHYS 385C</td>
<td>Theoretical Geophysics</td>
</tr>
<tr>
<td>GEOPHYS 385D</td>
<td>Tectonics</td>
</tr>
<tr>
<td>GEOPHYS 385E</td>
<td>Crustal Mechanics</td>
</tr>
<tr>
<td>GEOPHYS 385F</td>
<td>Earthquake Seismology, Deformation, and Stress</td>
</tr>
<tr>
<td>GEOPHYS 385G</td>
<td>Experimental Rock Physics</td>
</tr>
<tr>
<td>GEOPHYS 385H</td>
<td>Wave Physics</td>
</tr>
<tr>
<td>GEOPHYS 385I</td>
<td>Poroelasticity</td>
</tr>
<tr>
<td>GEOPHYS 385J</td>
<td>GEOPHYSICAL MULTI-PHASE FLOWS</td>
</tr>
<tr>
<td>GEOPHYS 385K</td>
<td>Radio Remote Sensing</td>
</tr>
<tr>
<td>GES 260</td>
<td>Sustainable Energy: Business Opportunities and Public Policy</td>
</tr>
<tr>
<td>GES 340</td>
<td>Clean Energy Project Development and Finance</td>
</tr>
<tr>
<td>GS 55Q</td>
<td>Energy Markets and Policy</td>
</tr>
<tr>
<td>GS 170</td>
<td>Clean Energy Opportunities</td>
</tr>
<tr>
<td>GS 171</td>
<td>Technology Licensing</td>
</tr>
<tr>
<td>GS 182</td>
<td>Global History: The Early Modern World, 1300 to 1800</td>
</tr>
<tr>
<td>GS 214</td>
<td>History of the International System</td>
</tr>
<tr>
<td>GS 249</td>
<td>History of South Africa</td>
</tr>
<tr>
<td>GS 270</td>
<td>History of the Americas</td>
</tr>
<tr>
<td>GS 381</td>
<td>History of South Africa</td>
</tr>
</tbody>
</table>
INTNLREL 102 History of the International System
INTNLREL 135/International Environmental Law and Policy
INTNLREL 136R Introduction to Global Justice
LATINAM 207 Spanish in Science/Science in Spanish
LAW 2518 U.S. Environmental Law in Transition
MATSCI 156 Solar Cells, Fuel Cells, and Batteries: Materials for the Energy Solution
MATSCI 302 Solar Cells
MATSCI 303 Principles, Materials and Devices of Batteries
ME 70 Introductory Fluids Engineering
ME 206A Design for Extreme Affordability
ME 206B Design for Extreme Affordability
ME 250 Internal Combustion Engines
ME 257 Gas-Turbine Design Analysis
ME 260 Fuel Cell Science and Technology
ME 262 Physics of Wind Energy
ME 357 Gas-Turbine Design Analysis
ME 370A Energy Systems I: Thermodynamics
ME 370B Energy Systems II: Modeling and Advanced Concepts
ME 370C Energy Systems III: Projects
ME 371 Combustion Fundamentals
MED 108Q Human Rights and Health
MI 70Q Photographing Nature
MS&E 52 Introduction to Decision Making
MS&E 92Q International Environmental Policy
MS&E 93Q Nuclear Weapons, Energy, Proliferation, and Terrorism
MS&E 152 Introduction to Decision Analysis
MS&E 185 Global Work
MS&E 190 Methods and Models for Policy and Strategy Analysis
MS&E 243 Energy and Environmental Policy Analysis
MS&E 250A Engineering Risk Analysis
MS&E 250B Project Course in Engineering Risk Analysis
MS&E 252 Decision Analysis I: Foundations of Decision Analysis
MS&E 292 Health Policy Modeling
MS&E 294 Systems Modeling for Climate Policy Analysis
MS&E 295 Energy Policy Analysis
MS&E 299 Voluntary Social Systems
MS&E 352 Decision Analysis II: Professional Decision Analysis
MS&E 494 The Energy Seminar
NATIVEAM 109 Native Indian Law
NATIVEAM 109 Native Nation Building
OBGYN 256 Current Topics and Controversies in Women's Health
OIT 333 Design for Extreme Affordability
OIT 334 Design for Extreme Affordability
OSPAUSTL 10 Coral Reef Ecosystems
OSPAUSTL 25 Freshwater Systems
OSPAUSTL 30 Coastal Forest Ecosystems
OSPAUSTL 40 Australian Studies: History, Society and Culture Down Under
OSPCPTWN 50 [Independent Study] Conservation & Resources in Sub-Saharan Africa
OSPCPTWN 63 Socio-Ecological Systems
OSPMADRD 8A Cities and Creativity: Cultural and Architectural Interpretations of Madrid
OSPSANTG 29 Sustainable Cities: Comparative Transportation Systems in Latin America
OSPSANTG 58 Living Chile: A Land of Extremes
OSPSANTG 71 Santiago: Urban Planning, Public Policy, and the Built Environment
OUTDOOR 101 Introduction to Outdoor Education
OUTDOOR 105 Outdoor Living Skills
OUTDOOR 106 Outdoor Leadership Practicum
PEDS 150 Social and Environmental Determinants of Health
PEDS 250 Social and Environmental Determinants of Health
PHIL 72 Contemporary Moral Problems
PHIL 73 The Ethics and Politics of Collective Action
PHIL 76 Introduction to Global Justice
PHIL 164 Central Topics in the Philosophy of Science: Theory and Evidence
PHIL 167B Philosophy, Biology, and Behavior
PHIL 175A Ethics and Politics of Public Service
PHIL 177C Ethics of Climate Change
PHIL 178M Introduction to Environmental Ethics
PHIL 264 Central Topics in the Philosophy of Science: Theory and Evidence
PHIL 267B Philosophy, Biology, and Behavior
PHIL 275A Ethics and Politics of Public Service
PHIL 277C Ethics of Climate Change
PHIL 278M Introduction to Environmental Ethics
PHYSICS 240 Introduction to the Physics of Energy
PHYSICS 241 Introduction to Nuclear Energy
POLECON 230 Strategy Beyond Markets
POLECON 231 Strategy Beyond Markets: Challenges and Opportunities in Developing Economies
POLISCI 73 Energy Policy in California and the West
POLISCI 124A The American West
POLISCI 131A The Ethics and Politics of Collective Action
POLISCI 133 Ethics and Politics of Public Service
POLISCI 134L Introduction to Environmental Ethics
POLISCI 136R Introduction to Global Justice
POLISCI 241S Spatial Approaches to Social Science
PSYCH 459 Frontiers in Interdisciplinary Biosciences
PUBLPOL 101 Politics and Public Policy
PUBLPOL 103D Ethics and Politics of Public Service
PUBLPOL 104 Economic Policy Analysis
PWR 1MS Writing & Rhetoric 1: Seeing Nature: The Power of Environmental Visual Rhetoric
PWR 1SI Writing & Rhetoric 1: Super-Storms, Polar Bears, and Droughts: The Rhetoric of Climate Change
PWR 2CR Writing & Rhetoric 2: Communicating Science to the Public
PWR 2JS Writing & Rhetoric 2: In Science We Trust
PWR 2KM Writing & Rhetoric 2: A Planet on the Edge: The Rhetoric of Sustainable Energy
PWR 2RL Writing & Rhetoric 2: The Rhetoric of the Natural and Beyond
PWR 2SB Writing & Rhetoric 2: Writing 'Science': Fact, Fiction, and Everything Between
PWR 91CL Intermediate Writing: Self & Science
PWR 91EP Intermediate Writing: Communicating Climate Change: Navigating the Stories from the Frontlines
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR 91JS</td>
<td>Intermediate Writing: Stanford Science Podcast</td>
</tr>
<tr>
<td>PWR 91KS</td>
<td>Intermediate Writing: Design Thinking and Science Communication</td>
</tr>
<tr>
<td>PWR 91NSC</td>
<td>Intermediate Writing: Introduction to Science Communication</td>
</tr>
<tr>
<td>PWR 91RS</td>
<td>Intermediate Writing: Communicating Bioinformation</td>
</tr>
<tr>
<td>PWR 91S</td>
<td>Intermediate Writing: Communicating Science</td>
</tr>
<tr>
<td>SIW 144</td>
<td>Energy, Environment, Climate and Conservation Policy: A Washington, D.C. Perspective</td>
</tr>
<tr>
<td>SOC 118</td>
<td>Social Movements and Collective Action</td>
</tr>
<tr>
<td>SOC 159</td>
<td>Social and Cultural Dimensions of Global Indigeneity</td>
</tr>
<tr>
<td>SOC 160</td>
<td>Formal Organizations</td>
</tr>
<tr>
<td>SOC 218</td>
<td>Social Movements and Collective Action</td>
</tr>
<tr>
<td>SOC 260</td>
<td>Formal Organizations</td>
</tr>
<tr>
<td>STATS 60</td>
<td>Introduction to Statistical Methods: Precalculus</td>
</tr>
<tr>
<td>STATS 110</td>
<td>Statistical Methods in Engineering and the Physical Sciences</td>
</tr>
<tr>
<td>STATS 141</td>
<td>Biostatistics</td>
</tr>
<tr>
<td>STATS 160</td>
<td>Introduction to Statistical Methods: Precalculus</td>
</tr>
<tr>
<td>STS 131</td>
<td>Science, Technology, and Environmental Justice</td>
</tr>
<tr>
<td>STS 190</td>
<td>Issues in Technology and the Environment</td>
</tr>
<tr>
<td>STS 200A</td>
<td>Food and Society: Politics, Culture and Technology</td>
</tr>
<tr>
<td>SURG 231</td>
<td>Healthcare in Haiti and other Resource Poor Countries</td>
</tr>
<tr>
<td>THINK 8</td>
<td>Sustainability and Collapse</td>
</tr>
<tr>
<td>THINK 40</td>
<td>Sustainability Challenges and Transitions</td>
</tr>
<tr>
<td>URBANST 110</td>
<td>Introduction to Urban Studies</td>
</tr>
<tr>
<td>URBANST 113</td>
<td>Introduction to Urban Design: Contemporary Urban Design in Theory and Practice</td>
</tr>
<tr>
<td>URBANST 114</td>
<td>Urban Culture in Global Perspective</td>
</tr>
<tr>
<td>URBANST 122</td>
<td>Ethics and Politics of Public Service</td>
</tr>
<tr>
<td>URBANST 124</td>
<td>Spatial Approaches to Social Science</td>
</tr>
<tr>
<td>URBANST 163</td>
<td>Land Use Control</td>
</tr>
<tr>
<td>URBANST 164</td>
<td>Sustainable Cities</td>
</tr>
<tr>
<td>URBANST 165</td>
<td>Sustainable Urban and Regional Transportation Planning</td>
</tr>
<tr>
<td>URBANST 167</td>
<td>Green Mobilities for the Suburbs of the Future</td>
</tr>
<tr>
<td>URBANST 174</td>
<td>Defining Smart Cities: Visions of Urbanism for the 21st Century</td>
</tr>
</tbody>
</table>

Total Units: 0