Skip navigation

EESS (EESS)

Courses

EESS 10SC. In the Age of the Anthropocene: Coupled-Human Natural Systems of Southeast Alaska. 2 Units.

Southeast Alaska is often described as America's "last frontier," embodying a physical reality of the "pristine" that was once revered by the early romantics and founders of the modern conservation movement throughout Western North America. Although endowed with more designated Wilderness land than any other state, Alaska remains a working landscape: a mixed cash-subsistence economy where communities rely upon the harvest and export of natural resources. Here, ecosystem services remain tangible, and people living in communities that are unconnected by roads confront questions of sustainability on a daily basis. This field-based course introduces students to the global questions of land use change and sustainable resource management in the American West through the place-based exploration of Southeast Alaska. Focused on four key social-ecological challenges -- fisheries, forestry, tourism, and energy -- the coupled human-natural systems of Southeast Alaska provide a unique lens for students to interpret broader resource management and conservation issues. The curriculum balances field explorations and classroom lectures with community exploration in which students will engage with fishermen, hatchery workers, forest managers, loggers, mill owners, tour operators, tourists, city officials, citizens, and Native elders. Students will catch their own salmon, walk through old-growth and logged forests, kayak next to glacial moraines, and witness the impacts of human activities, both local and global, on the social-ecological systems around them. In the context of rapidly changing ecosystems, students will confront the historical, ecological, and economic complexities of environmental stewardship in this region. By embedding their experiences within frameworks of land change science, land-ocean interactions, ecosystem ecology, and natural resource management and economics, students will leave this course ready to apply what they have learned to the global challenges of sustainability and conservation that pervade systems far beyond Alaska and extend throughout the American West. This course is co-sponsored by the Bill Lane Center for the American West and takes place in Sitka, Alaska. Students must arrange for their arrival in Seattle, WA on September 2; students will return to Stanford as a group (flight covered by the program) on September 20.

EESS 12SC. Environmental and Geological Field Studies in the Rocky Mountains. 2 Units.

The Rocky Mountain area, ecologically and geologically diverse, is being strongly impacted by changing land-use patterns, global and regional environmental change, and societal demands for energy and natural resources. This three-week field program emphasizes coupled environmental and geological problems in the Rocky Mountains and will cover a broad range of topics including the geologic origin of the American West from three billion years ago to the recent; paleoclimatology and the glacial history of this mountainous region; the long- and short-term carbon cycle and global climate change; and environmental issues in the American West that are related to changing land-use patterns and increased demand for its abundant natural resources. These broad topics are integrated into a coherent field study by examining earth/environmental science-related questions in three different settings: 1) the three-billion-year-old rocks and the modern glaciers of the Wind River Mountains of Wyoming; 2) the sediments in the adjacent Wind River basin that host abundant gas and oil reserves and also contain the long-term climate history of this region; and 3) the volcanic center of Yellowstone National Park and mountainous region of Teton National Park, and the economic and environmental problems associated with gold mining and extraction of oil and gas in areas adjoining these national parks. Students will complete six assignments based upon field exercises, working in small groups to analyze data and prepare reports and maps. Lectures will be held in the field prior to and after fieldwork. Note: This course involves one week of backpacking in the Wind Rivers and hiking while staying in cabins near Jackson Hole, Wyoming, and horseback riding in the Dubois area of Wyoming. Students must arrive in Salt Lake City on Monday, Sept. 1. (Hotel lodging will be provided for the night of Sept. 1, and thereafter students will travel as a Sophomore College group.) We will return to campus on Sunday, Sept. 21.
Same as: EARTHSYS 12SC, GES 12SC.

EESS 38N. The Worst Journey in the World: The Science, Literature, and History of Polar Exploration. 3 Units.

This course examines the motivations and experiences of polar explorers under the harshest conditions on Earth, as well as the chronicles of their explorations and hardships, dating to the 1500s for the Arctic and the 1700s for the Antarctic. Materials include The Worst Journey in the World by Aspley Cherry-Garrard who in 1911 participated in a midwinter Antarctic sledging trip to recover emperor penguin eggs. Optional field trip into the high Sierra in March.
Same as: EARTHSYS 38N, GES 38N.

EESS 42. The Global Warming Paradox II. 1 Unit.

Further discussion of the complex climate challenges posed by the substantial benefits of energy consumption, including the critical tension between the enormous global demand for increased human well-being and the negative climate consequences of large-scale emissions of carbon dioxide. Discussions of topics of student interest, including peer-reviewed scientific papers, current research results, and portrayal of scientific findings by the mass media and social networks. Focus is on student engagement in on-campus and off-campus activities. Prerequisite: EESS 41N or EARTHSYS 41N or consent of instructor.
Same as: EARTHSYS 42.

EESS 43. The Global Warming Paradox III. 1 Unit.

Further discussion of the complex climate challenges posed by the substantial benefits of energy consumption, including the critical tension between the enormous global demand for increased human well-being and the negative climate consequences of large-scale emissions of carbon dioxide. Discussions explore topics of student interest, including peer-reviewed scientific papers, current research results, and portrayal of scientific findings by the mass media and social networks. Focus is on student engagement in on-campus and off-campus activities.May be repeat for credit.

EESS 46N. Exploring the Critical Interface between the Land and Monterey Bay: Elkhorn Slough. 3 Units.

Preference to freshmen. Field trips to sites in the Elkhorn Slough, a small agriculturally impacted estuary that opens into Monterey Bay, a model ecosystem for understanding the complexity of estuaries, and one of California's last remaining coastal wetlands. Readings include Jane Caffrey's Changes in a California Estuary: A Profile of Elkhorn Slough. Basics of biogeochemistry, microbiology, oceanography, ecology, pollution, and environmental management.
Same as: EARTHSYS 46N.

EESS 49N. Multi-Disciplinary Perspectives on a Large Urban Estuary: San Francisco Bay. 3 Units.

This course will be focused around San Francisco Bay, the largest estuary on the Pacific coasts of both North and South America as a model ecosystem for understanding the critical importance and complexity of estuaries. Despite its uniquely urban and industrial character, the Bay is of immense ecological value and encompasses over 90% of California's remaining coastal wetlands. Students will be exposed to the basics of estuarine biogeochemistry, microbiology, ecology, hydrodynamics, pollution, and ecosystem management/restoration issues through lectures, interactive discussions, and field trips. Knowledge of introductory biology and chemistry is recommended.
Same as: CEE 50N, EARTHSYS 49N.

EESS 56Q. Changes in the Coastal Ocean: The View From Monterey and San Francisco Bays. 3 Units.

Preference to sophomores. Recent changes in the California current, using Monterey Bay as an example. Current literature introduces principles of oceanography. Visits from researchers from MBARI, Hopkins, and UCSC. Optional field trip to MBARI and Monterey Bay.
Same as: EARTHSYS 56Q.

EESS 57Q. Climate Change from the Past to the Future. 3 Units.

Preference to sophomores. Numeric models to predict how climate responds to increase of greenhouse gases. Paleoclimate during times in Earth's history when greenhouse gas concentrations were elevated with respect to current concentrations. Predicted scenarios of climate models and how these models compare to known hyperthermal events in Earth history. Interactions and feedbacks among biosphere, hydrosphere, atmosphere, and lithosphere. Topics include long- and short-term carbon cycle, coupled biogeochemical cycles affected by and controlling climate change, and how the biosphere responds to climate change. Possible remediation strategies.
Same as: EARTHSYS 57Q.

EESS 61Q. Food and security. 3 Units.

The course will provide a broad overview of key policy issues concerning agricultural development and food security, and will assess how global governance is addressing the problem of food security. At the same time the course will provide an overview of the field of international security, and examine how governments and international institutions are beginning to include food in discussions of security.
Same as: EARTHSYS 61Q, INTNLREL 61Q.

EESS 101. Environmental and Geological Field Studies in the Rocky Mountains. 3 Units.

Three-week, field-based program in the Greater Yellowstone/Teton and Wind River Mountains of Wyoming. Field-based exercises covering topics including: basics of structural geology and petrology; glacial geology; western cordillera geology; paleoclimatology; chemical weathering; aqueous geochemistry; and environmental issues such as acid mine drainage and changing land-use patterns.
Same as: EARTHSYS 100, GES 101.

EESS 105. Food and Community: New Visions for a Sustainable Future. 3 Units.

Through this course students will learn about the community and outreach component of the urban gardening movement. Over the quarter students will learn about urban farming, about projects that work to increase access of the most underserved to fresh and local food, and about the challenges surrounding these efforts. The theme of the course will be stories- stories of food and community, of innovation, and of service. Students will learn through engaging in conversation with different leaders in the local food movement. Additionally, through hands-on learning and participation, students will become familiar with different types of community food projects in the Bay Area, including urban farms, free food giveaways, food banks, and gleaning projects. Service Learning Course (certified by Haas Center). Limited enrollment. May be repeated for credit.
Same as: EARTHSYS 105.

EESS 106. World Food Economy. 5 Units.

The interrelationships among food, populations, resources, and economic development. The role of agricultural and rural development in achieving economic and social progress in low-income nations. Emphasis is on public sector decision making as it relates to food policy.
Same as: EARTHSYS 106, ECON 106.

EESS 111. Biology and Global Change. 4 Units.

The biological causes and consequences of anthropogenic and natural changes in the atmosphere, oceans, and terrestrial and freshwater ecosystems. Topics: glacial cycles and marine circulation, greenhouse gases and climate change, tropical deforestation and species extinctions, and human population growth and resource use. Prerequisite: Biology or Human Biology core or graduate standing.
Same as: BIO 117, EARTHSYS 111.

EESS 112. Human Society and Environmental Change. 4 Units.

Interdisciplinary approaches to understanding human-environment interactions with a focus on economics, policy, culture, history, and the role of the state. Prerequisite: ECON 1
Same as: EARTHSYS 112, HISTORY 103D.

EESS 117. Earth Sciences of the Hawaiian Islands. 4 Units.

Progression from volcanic processes through rock weathering and soil-ecosystem development to landscape evolution. The course starts with an investigation of volcanic processes, including the volcano structure, origin of magmas, physical-chemical factors of eruptions. Factors controlling rock weathering and soil development, including depth and nutrient levels impacting plant ecosystems, are explored next. Geomorphic processes of landscape evolution including erosion rates, tectonic/volcanic activity, and hillslope stability conclude the course. Methods for monitoring and predicting eruptions, defining spatial changes in landform, landform stability, soil production rates, and measuring biogeochemical processes are covered throughout the course. This course is restricted to students accepted into the Earth Systems of Hawaii Program.
Same as: EARTHSCI 117, EARTHSYS 117.

EESS 118. Understanding Natural Hazards, Quantifying Risk, Increasing Resilience in Highly Urbanized Regions. 3 Units.

Integrating the science of natural hazards, methods for quantitatively estimating the risks that these hazards pose to populations and property, engineering solutions that might best ameliorate these risks and increase resilience to future events, and policy and economic decision-making studies that may increase long-term resilience to future events. Panel discussions by outside experts exploring the science, engineering, policy, and economics that underly the hazards, risks, and strategies for increasing resilience. Group assignments to evaluate the way in which natural hazards, and human population and developing interact in megacities to produce risk, and what strategies might be adopted in each area to reduce risks posted by the specific hazards faced by these urban areas.
Same as: EESS 218, GEOPHYS 118, GEOPHYS 218, GES 118, GES 218.

EESS 122. GIS for good: Applications of GIS for International Development and Humanitarian Assistance. 3-4 Units.

This service-learning course exposes students to geographic information systems (GIS) as a tool for exploring alternative solutions to complex environmental and humanitarian issues in the international arena. The project-based, interdisciplinary structure of this class gives primary emphasis to the use of GIS for field data collection, mapping, analysis and visualization that allows for multi-criteria assessment of community development. Those with no prior GIS experience will be required to take an introductory GIS workshop hosted by the Geospatial Center in Branner Library during the first two weeks of class.
Same as: EARTHSYS 127, EESS 222.

EESS 141. Remote Sensing of the Oceans. 3-4 Units.

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Same as: EARTHSYS 141, EARTHSYS 241, EESS 241, GEOPHYS 141.

EESS 146A. Atmosphere, Ocean, and Climate Dynamics: The Atmospheric Circulation. 3 Units.

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the atmospheric circulation. Topics include the global energy balance, the greenhouse effect, the vertical and meridional structure of the atmosphere, dry and moist convection, the equations of motion for the atmosphere and ocean, including the effects of rotation, and the poleward transport of heat by the large-scale atmospheric circulation and storm systems. Prerequisites: MATH 51 or CME100 and PHYSICS 41.
Same as: EARTHSYS 146A, EARTHSYS 246A, EESS 246A, GEOPHYS 146A, GEOPHYS 246A.

EESS 146B. Atmosphere, Ocean, and Climate Dynamics: the Ocean Circulation. 3 Units.

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the large-scale ocean circulation. This course will give an overview of the structure and dynamics of the major ocean current systems that contribute to the meridional overturning circulation, the transport of heat, salt, and biogeochemical tracers, and the regulation of climate. Topics include the tropical ocean circulation, the wind-driven gyres and western boundary currents, the thermohaline circulation, the Antarctic Circumpolar Current, water mass formation, atmosphere-ocean coupling, and climate variability. Prerequisites: EESS 146A or EESS 246A, or CEE 164 or CEE 262D, or consent of instructor.
Same as: EARTHSYS 146B, EARTHSYS 246B, EESS 246B, GEOPHYS 146B, GEOPHYS 246B.

EESS 148. Introduction to Physical Oceanography. 4 Units.

The dynamic basis of oceanography. Topics: physical environment; conservation equations for salt, heat, and momentum; geostrophic flows; wind-driven flows; the Gulf Stream; equatorial dynamics and ENSO; thermohaline circulation of the deep oceans; and tides. Prerequisite: PHYSICS 41 (formerly 53).
Same as: CEE 164, CEE 262D, EARTHSYS 164.

EESS 151. Biological Oceanography. 3-4 Units.

Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics include distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Local weekend field trips. Designed to be taken concurrently with Marine Chemistry (EESS/EARTHSYS 152/252). Prerequisites: BIO 43 and EESS 8 or equivalent.
Same as: EARTHSYS 151, EARTHSYS 251, EESS 251.

EESS 152. Marine Chemistry. 3-4 Units.

Introduction to the interdisciplinary knowledge and skills required to critically evaluate problems in marine chemistry and related disciplines. Physical, chemical, and biological processes that determine the chemical composition of seawater. Air-sea gas exchange, carbonate chemistry, and chemical equilibria, nutrient and trace element cycling, particle reactivity, sediment chemistry, and diagenesis. Examination of chemical tracers of mixing and circulation and feedbacks of ocean processes on atmospheric chemistry and climate. Designed to be taken concurrently with Biological Oceanography (EESS/EARTHSYS 151/251)
Same as: EARTHSYS 152, EARTHSYS 252, EESS 252.

EESS 155. Science of Soils. 3-4 Units.

Physical, chemical, and biological processes within soil systems. Emphasis is on factors governing nutrient availability, plant growth and production, land-resource management, and pollution within soils. How to classify soils and assess nutrient cycling and contaminant fate. Recommended: introductory chemistry and biology.
Same as: EARTHSYS 155.

EESS 156. Soil and Water Chemistry. 1-4 Unit.

(Graduate students register for 256.) Practical and quantitative treatment of soil processes affecting chemical reactivity, transformation, retention, and bioavailability. Principles of primary areas of soil chemistry: inorganic and organic soil components, complex equilibria in soil solutions, and adsorption phenomena at the solid-water interface. Processes and remediation of acid, saline, and wetland soils. Recommended: soil science and introductory chemistry and microbiology.
Same as: EARTHSYS 156, EARTHSYS 256, EESS 256.

EESS 158. Geomicrobiology. 3 Units.

How microorganisms shape the geochemistry of the Earth's crust including oceans, lakes, estuaries, subsurface environments, sediments, soils, mineral deposits, and rocks. Topics include mineral formation and dissolution; biogeochemical cycling of elements (carbon, nitrogen, sulfur, and metals); geochemical and mineralogical controls on microbial activity, diversity, and evolution; life in extreme environments; and the application of new techniques to geomicrobial systems. Recommended: introductory chemistry and microbiology such as CEE 274A.
Same as: EARTHSYS 158, EARTHSYS 258, EESS 258.

EESS 162. Remote Sensing of Land. 4 Units.

The use of satellite remote sensing to monitor land use and land cover, with emphasis on terrestrial changes. Topics include pre-processing data, biophysical properties of vegetation observable by satellite, accuracy assessment of maps derived from remote sensing, and methodologies to detect changes such as urbanization, deforestation, vegetation health, and wildfires.
Same as: EARTHSYS 142, EARTHSYS 242, EESS 262.

EESS 164. Fundamentals of Geographic Information Science (GIS). 3-4 Units.

Survey of geographic information including maps, satellite imagery, and census data, approaches to spatial data, and tools for integrating and examining spatially-explicit data. Emphasis is on fundamental concepts of geographic information science and associated technologies. Topics include geographic data structure, cartography, remotely sensed data, statistical analysis of geographic data, spatial analysis, map design, and geographic information system software. Computer lab assignments.
Same as: EARTHSYS 144.

EESS 173. Aquaculture and the Environment: Science, History, and Policy. 3 Units.

Can aquaculture feed billions of people without degrading aquatic ecosystems or adversely impacting local communities? Interdisciplinary focus on aquaculture science and management, international seafood markets, historical case studies (salmon farming in Chile, tuna ranching in the Mediterranean, shrimp farming in Vietnam), current federal/state legislation. Field trip to aquaculture farm and guest lectures. By application only - instructor consent required. Contact gerhart@stanford.edu or dhklinger@stanford.edu prior to first day of class.
Same as: EARTHSYS 173, EARTHSYS 273, EESS 273.

EESS 179S. Seminar: Issues in Environmental Science, Technology and Sustainability. 1-2 Unit.

Invited faculty, researchers and professionals share their insights and perspectives on a broad range of environmental and sustainability issues. Students critique seminar presentations and associated readings.
Same as: CEE 179S, CEE 279S, EARTHSYS 179S.

EESS 181. Urban Agriculture in the Developing World. 3-4 Units.

In this advanced undergraduate course, students will learn about some of the key social and environmental challenges faced by cities in the developing world, and the current and potential role that urban agriculture plays in meeting (or exacerbating) those challenges. This is a service-learning course, and student teams will have the opportunity to partner with real partner organizations in a major developing world city to define and execute a project focused on urban development, and the current or potential role of urban agriculture. Service-learning projects will employ primarily the student's analytical skills such as synthesis of existing research findings, interdisciplinary experimental design, quantitative data analysis and visualization, GIS, and qualitative data collection through interviews and textual analysis. Previous coursework in the aforementioned analytical skills is preferred, but not required. Admission is by application.
Same as: EARTHSYS 181, EARTHSYS 281, EESS 281, URBANST 181.

EESS 183. Food Matters: Agriculture in Film. 1 Unit.

Film series presenting historical and contemporary issues dealing with food and agriculture across the globe. Students discuss reactions and thoughts in a round table format. May be repeated for credit.
Same as: EARTHSYS 183, EARTHSYS 283, EESS 283.

EESS 184. Climate and Agriculture. 3-4 Units.

The effects of climate change on global agriculture and food security, and the effects of agriculture on climate change. An overview of different lines of evidence used to measure impacts and adaptations, and to quantify future impacts, risks, and adaptation needs for agro-ecosystems and society. Enrollment limited to 25; priority to juniors, seniors, and graduate students. Prerequisites: ECON 106/206 or permission of instructor.
Same as: EARTHSYS 184, EARTHSYS 284, EESS 284.

EESS 208. Topics in Geobiology. 1 Unit.

Reading and discussion of classic and recent papers in the field of Geobiology. Co-evolution of Earth and life; critical intervals of environmental and biological change; geomicrobiology; paleobiology; global biogeochemical cycles; scaling of geobiological processes in space and time.
Same as: GES 208.

EESS 211. Fundamentals of Modeling. 3-5 Units.

Simulation models are a powerful tool for environmental research, if used properly. The major concepts and techniques for building and evaluating models. Topics include model calibration, model selection, uncertainty and sensitivity analysis, and Monte Carlo and bootstrap methods. Emphasis is on gaining hands-on experience using the R programming language. Prerequisite: Basic knowledge of nstatistics.
Same as: EARTHSYS 211.

EESS 212. Measurements in Earth Systems. 3-4 Units.

Restricted to EESS first-year, graduate students. Techniques to track biological, chemical, and physical processes operating across the San Francisquito Creek watershed, encompassing upland, aquatic, estuarine, and marine environments. Topics include gas and water flux measurement, assessment of microbiological communities, determination of biological productivity, isotopic analysis, soil and water chemistry determination, and identification of rock strata and weathering processes.

EESS 214. Introduction to geostatistics and modeling of spatial uncertainty. 3-4 Units.

Introduction of fundamental geostatistical tools for modeling spatial variability and uncertainty, and mapping of environmental attributes. Additional topics include sampling design and incorporation of different types of information (continuous, categorical) in prediction. Assignments consist of small problems to familiarize students with theoretical concepts, and applications dealing with the analysis and interpretation of various data sets (soil, water pollution, atmospheric constituents, remote sensing) primarily using Matlab. No prior programming experience is required. Open to graduates. Open to undergraduates with consent from the instructor. 3-credit option includes midterm/final or student-developed project. 4-credit option requires both. Prerequisite: College-level introductory statistics.

EESS 215. Earth System Dynamics. 2 Units.

This is a graduate level course that examines the dynamics of the Earth System from an integrated perspective. Lectures introduce the physical, biogeochemical, ecological, and human dimensions of the Earth System, with emphasis on feedbacks, thresholds and tipping points. Human interactions with climate and land systems are emphasized in order to enable in-depth exploration of Earth System dynamics. Lab projects focus on a region of the globe for which rich coordinated data sources exist and complex Earth System dynamics dominate the environment.

EESS 216. Terrestrial Biogeochemistry. 3 Units.

Nutrient cycling and the regulation of primary and secondary production in terrestrial, freshwater, and marine ecosystems; land-water and biosphere-atmosphere interactions; global element cycles and their regulation; human effects on biogeochemical cycles. Prerequisite: graduate standing in science or engineering; consent of instructor for undergraduates or coterminal students.
Same as: BIO 216.

EESS 217. Climate of the Cenozoic. 3 Units.

For upper-division undergraduate and graduate students. The paleoclimate of the Cenozoic and how climate changes in the past link to the carbon cycle. Topics include long- and short-term records of climate on continents and oceans, evidence for and causes of hyperthermal events, how the Earth's climate has responded in increased carbon dioxide in the atmosphere. Guest speakers, student presentations.

EESS 218. Understanding Natural Hazards, Quantifying Risk, Increasing Resilience in Highly Urbanized Regions. 3 Units.

Integrating the science of natural hazards, methods for quantitatively estimating the risks that these hazards pose to populations and property, engineering solutions that might best ameliorate these risks and increase resilience to future events, and policy and economic decision-making studies that may increase long-term resilience to future events. Panel discussions by outside experts exploring the science, engineering, policy, and economics that underly the hazards, risks, and strategies for increasing resilience. Group assignments to evaluate the way in which natural hazards, and human population and developing interact in megacities to produce risk, and what strategies might be adopted in each area to reduce risks posted by the specific hazards faced by these urban areas.
Same as: EESS 118, GEOPHYS 118, GEOPHYS 218, GES 118, GES 218.

EESS 219. Climate Variability during the Holocene: Understanding what is Natural Climate Change. 3 Units.

Many elements of the debate about attribution of modern climate change to man-made influences hinge on understanding the past history of climate as well as forcing functions such as solar output, volcanism, and "natural" trace gas variability. Interest in Holocene reconstructions of past climate and forcing functions has surged in the last 20 years providing a robust literature set for discussion and analysis. The goal of this class is to provide graduate students with a view of the archives available for Holocene paleoenvironmental analysis, the tracers that are used, and the results thus far. We will also explore the world of data-model comparisons and examine the role that paleorecords play in the IPCC reports. The class will consist of some lectures as well as many class discussions based on assigned readings.

EESS 220. Physical Hydrogeology. 4 Units.

(Formerly GES 230.) Theory of underground water occurrence and flow, analysis of field data and aquifer tests, geologic groundwater environments, solution of field problems, and groundwater modeling. Introduction to groundwater contaminant transport and unsaturated flow. Lab. Prerequisite: elementary calculus.
Same as: CEE 260A.

EESS 221. Contaminant Hydrogeology and Reactive Transport. 4 Units.

For earth scientists and engineers. Environmental, geologic, and water resource problems involving migration of contaminated groundwater through porous media and associated biogeochemical and fluid-rock reactions. Conceptual and quantitative treatment of advective-dispersive transport with reacting solutes. Predictive models of contaminant behavior controlled by local equilibrium and kinetics. Modern methods of contaminant transport simulation and reactive transport modeling using geochemical transport software. Some Matlab programming / program modification required. Prerequisite: Physical Hydrogeology EESS 220 / CEE 260A (Gorelick) or equivalent. Recommended: course work in environmental chemistry or geochemistry (e.g., one or more of the following: EESS 155, EESS 156/256 GES 90, GES 170/279, GES 171, CEE 177 or CEE 270).
Same as: CEE 260C, GES 225.

EESS 222. GIS for good: Applications of GIS for International Development and Humanitarian Assistance. 3-4 Units.

This service-learning course exposes students to geographic information systems (GIS) as a tool for exploring alternative solutions to complex environmental and humanitarian issues in the international arena. The project-based, interdisciplinary structure of this class gives primary emphasis to the use of GIS for field data collection, mapping, analysis and visualization that allows for multi-criteria assessment of community development. Those with no prior GIS experience will be required to take an introductory GIS workshop hosted by the Geospatial Center in Branner Library during the first two weeks of class.
Same as: EARTHSYS 127, EESS 122.

EESS 227. Modern Turbidite Systems as Analogues for Deep-water Petroleum Plays. 3 Units.

This seminar is designed for earth science upperclassmen and graduate students. Marine geophysical and geological techniques will be used to illustrate and understand source-to-sink characteristics of modern turbidite systems. The course will examine a wide variety of small-scale base-of-apron (km) to large-scale (100's of km) sand-rich to mud-rich systems. New research on mass transport deposits, hybrid beds, and turbidite paleoseismology will be presented. Variations in turbidite system architecture, that are dependent upon tectonic setting, sediment supply, climate, sea level change, and contour currents will be discussed. The utility and pitfalls of model-driven approaches are also explored.
Same as: GES 227.

EESS 240. Advanced Oceanography. 3 Units.

For upper-division undergraduates and graduate students in the earth, biologic, and environmental sciences. Topical issues in marine science/oceanography. Topics vary each year following or anticipating research trends in oceanographic research. Focus is on links between the circulation and physics of the ocean with climate in the N. Pacific region, and marine ecologic responses. Participation by marine scientists from research groups and organizations including the Monterey Bay Aquarium Research Institute.

EESS 241. Remote Sensing of the Oceans. 3-4 Units.

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Same as: EARTHSYS 141, EARTHSYS 241, EESS 141, GEOPHYS 141.

EESS 242. Antarctic Marine Geology. 3 Units.

For upper-division undergraduates and graduate students. Intermediate and advanced topics in marine geology and geophysics, focusing on examples from the Antarctic continental margin and adjacent Southern Ocean. Topics: glaciers, icebergs, and sea ice as geologic agents (glacial and glacial marine sedimentology, Southern Ocean current systems and deep ocean sedimentation), Antarctic biostratigraphy and chronostratigraphy (continental margin evolution). Students interpret seismic lines and sediment core/well log data. Examples from a recent scientific drilling expedition to Prydz Bay, Antarctica. Up to two students may have an opportunity to study at sea in Antarctica during Winter Quarter.
Same as: EARTHSYS 272.

EESS 244. Marine Ecosystem Modeling. 3 Units.

Practical background necessary to construct and implement a 2-dimensional (space and time) numerical model of a simple marine ecosystem. Computer programming, model design and parameterization, and model evaluation. Students develop and refine their own multi-component marine ecosystem model.

EESS 245. Advanced Biological Oceanography. 3-4 Units.

For upper-division undergraduates and graduate students. Themes vary annually but include topics such as marine bio-optics, marine ecological modeling, and phytoplankton primary production. May be repeated for credit. Enrollment by instructor consent only.

EESS 246A. Atmosphere, Ocean, and Climate Dynamics: The Atmospheric Circulation. 3 Units.

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the atmospheric circulation. Topics include the global energy balance, the greenhouse effect, the vertical and meridional structure of the atmosphere, dry and moist convection, the equations of motion for the atmosphere and ocean, including the effects of rotation, and the poleward transport of heat by the large-scale atmospheric circulation and storm systems. Prerequisites: MATH 51 or CME100 and PHYSICS 41.
Same as: EARTHSYS 146A, EARTHSYS 246A, EESS 146A, GEOPHYS 146A, GEOPHYS 246A.

EESS 246B. Atmosphere, Ocean, and Climate Dynamics: the Ocean Circulation. 3 Units.

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the large-scale ocean circulation. This course will give an overview of the structure and dynamics of the major ocean current systems that contribute to the meridional overturning circulation, the transport of heat, salt, and biogeochemical tracers, and the regulation of climate. Topics include the tropical ocean circulation, the wind-driven gyres and western boundary currents, the thermohaline circulation, the Antarctic Circumpolar Current, water mass formation, atmosphere-ocean coupling, and climate variability. Prerequisites: EESS 146A or EESS 246A, or CEE 164 or CEE 262D, or consent of instructor.
Same as: EARTHSYS 146B, EARTHSYS 246B, EESS 146B, GEOPHYS 146B, GEOPHYS 246B.

EESS 249. Marine Stable Isotopes. 3 Units.

This course will provide an introduction to stable isotopes biogeochemistry with emphasis on applications in marine science. We will cover fundamental concepts of nuclear structure and origin of elements and isotopes, and stable isotopic fractionation. We will discuss mass spectrometry techniques, mass independent fractionation, clumped isotopes, mass balance and box models. Applications of these concepts to studies of ocean circulation, marine carbon and nitrogen cycles, primary productivity, and particle scavenging will also be discussed.

EESS 250. Elkhorn Slough Microbiology. 3 Units.

(Formerly GES 270.) The microbial ecology and biogeochemistry of Elkhorn Slough, an agriculturally-impacted coastal estuary draining into Monterey Bay. The diversity of microbial lifestyles associated with estuarine physical/chemical gradients, and the influence of microbial activity on the geochemistry of the Slough, including the cycling of carbon, nitrogen, sulfur, and metals. Labs and field work. Location: Hopkins Marine Station.

EESS 251. Biological Oceanography. 3-4 Units.

Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics include distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Local weekend field trips. Designed to be taken concurrently with Marine Chemistry (EESS/EARTHSYS 152/252). Prerequisites: BIO 43 and EESS 8 or equivalent.
Same as: EARTHSYS 151, EARTHSYS 251, EESS 151.

EESS 252. Marine Chemistry. 3-4 Units.

Introduction to the interdisciplinary knowledge and skills required to critically evaluate problems in marine chemistry and related disciplines. Physical, chemical, and biological processes that determine the chemical composition of seawater. Air-sea gas exchange, carbonate chemistry, and chemical equilibria, nutrient and trace element cycling, particle reactivity, sediment chemistry, and diagenesis. Examination of chemical tracers of mixing and circulation and feedbacks of ocean processes on atmospheric chemistry and climate. Designed to be taken concurrently with Biological Oceanography (EESS/EARTHSYS 151/251)
Same as: EARTHSYS 152, EARTHSYS 252, EESS 152.

EESS 253S. Hopkins Microbiology Course. 3-12 Units.

(Formerly GES 274S.) Four-week, intensive. The interplay between molecular, physiological, ecological, evolutionary, and geochemical processes that constitute, cause, and maintain microbial diversity. How to isolate key microorganisms driving marine biological and geochemical diversity, interpret culture-independent molecular characterization of microbial species, and predict causes and consequences. Laboratory component: what constitutes physiological and metabolic microbial diversity; how evolutionary and ecological processes diversify individual cells into physiologically heterogeneous populations; and the principles of interactions between individuals, their population, and other biological entities in a dynamically changing microbial ecosystem. Prerequisites: CEE 274A,B, or equivalents.
Same as: BIO 274S, BIOHOPK 274, CEE 274S.

EESS 255. Microbial Physiology. 3 Units.

Introduction to the physiology of microbes including cellular structure, transcription and translation, growth and metabolism, mechanisms for stress resistance and the formation of microbial communities. These topics will be covered in relation to the evolution of early life on Earth, ancient ecosystems, and the interpretation of the rock record. Recommended: introductory biology and chemistry.

EESS 256. Soil and Water Chemistry. 1-4 Unit.

(Graduate students register for 256.) Practical and quantitative treatment of soil processes affecting chemical reactivity, transformation, retention, and bioavailability. Principles of primary areas of soil chemistry: inorganic and organic soil components, complex equilibria in soil solutions, and adsorption phenomena at the solid-water interface. Processes and remediation of acid, saline, and wetland soils. Recommended: soil science and introductory chemistry and microbiology.
Same as: EARTHSYS 156, EARTHSYS 256, EESS 156.

EESS 258. Geomicrobiology. 3 Units.

How microorganisms shape the geochemistry of the Earth's crust including oceans, lakes, estuaries, subsurface environments, sediments, soils, mineral deposits, and rocks. Topics include mineral formation and dissolution; biogeochemical cycling of elements (carbon, nitrogen, sulfur, and metals); geochemical and mineralogical controls on microbial activity, diversity, and evolution; life in extreme environments; and the application of new techniques to geomicrobial systems. Recommended: introductory chemistry and microbiology such as CEE 274A.
Same as: EARTHSYS 158, EARTHSYS 258, EESS 158.

EESS 259. Environmental Microbial Genomics. 1-3 Unit.

The application of molecular and environmental genomic approaches to the study of biogeochemically-important microorganisms in the environment without the need for cultivation. Emphasis is on genomic analysis of microorganisms by direct extraction and cloning of DNA from natural microbial assemblages. Topics include microbial energy generation and nutrient cycling, genome structure, gene function, physiology, phylogenetic and functional diversity, evolution, and population dynamics of uncultured communities.

EESS 260. Advanced Statistical Methods for Earth System Analysis. 3 Units.

Introduction for graduate students to important issues in data analysis relevant to earth system studies. Emphasis on concepts and implementation (in R), rather than formal proofs. Likely topics include the bootstrap, non-parametric methods, regression in the presence of spatial and temporal correlation, measurement errors, extreme value distributions, and high-dimensional regressions. Topics subject to change each year. Prerequisites: STATS 110 or equivalent, EESS 211.
Same as: STATS 360.

EESS 262. Remote Sensing of Land. 4 Units.

The use of satellite remote sensing to monitor land use and land cover, with emphasis on terrestrial changes. Topics include pre-processing data, biophysical properties of vegetation observable by satellite, accuracy assessment of maps derived from remote sensing, and methodologies to detect changes such as urbanization, deforestation, vegetation health, and wildfires.
Same as: EARTHSYS 142, EARTHSYS 242, EESS 162.

EESS 263. Topics in Advanced Geostatistics. 3-4 Units.

Conditional expectation theory and projections in Hilbert spaces; parametric versus non-parametric geostatistics; Boolean, Gaussian, fractal, indicator, and annealing approaches to stochastic imaging; multiple point statistics inference and reproduction; neural net geostatistics; Bayesian methods for data integration; techniques for upscaling hydrodynamic properties. May be repeated for credit. Prerequisites: 240, advanced calculus, C++/Fortran.
Same as: ENERGY 242.

EESS 270. Analyzing land use in a globalized world. 3 Units.

This is a graduate level course that examines the dynamics of land use in relation to the multiple dimensions of globalization. The objective is to understand and analyze how the expansion of global trade, the emergence of new global actors, and public and private regulations affect land use changes. Beyond getting a better understanding of the dynamics of land use change, the course will enable students to better understand how to effectively influence land use change, from different vantage points: government, NGO, information broker, corporate actor. The main emphasis is on tropical regions. Lectures introduce various topics related to theories, practical cases, and evaluation tools to better understand and analyze contemporary land use dynamics. Data analyses will be conducted in the lab section, based on case studies.

EESS 273. Aquaculture and the Environment: Science, History, and Policy. 3 Units.

Can aquaculture feed billions of people without degrading aquatic ecosystems or adversely impacting local communities? Interdisciplinary focus on aquaculture science and management, international seafood markets, historical case studies (salmon farming in Chile, tuna ranching in the Mediterranean, shrimp farming in Vietnam), current federal/state legislation. Field trip to aquaculture farm and guest lectures. By application only - instructor consent required. Contact gerhart@stanford.edu or dhklinger@stanford.edu prior to first day of class.
Same as: EARTHSYS 173, EARTHSYS 273, EESS 173.

EESS 280B. Principles and Practices of Sustainable Agriculture. 3-4 Units.

Field-based training in ecologically sound agricultural practices at the Stanford Community Farm. Weekly lessons, field work, and group projects. Field trips to educational farms in the area. Topics include: soils, composting, irrigation techniques, IPM, basic plant anatomy and physiology, weeds, greenhouse management, and marketing.
Same as: EARTHSYS 180B.

EESS 281. Urban Agriculture in the Developing World. 3-4 Units.

In this advanced undergraduate course, students will learn about some of the key social and environmental challenges faced by cities in the developing world, and the current and potential role that urban agriculture plays in meeting (or exacerbating) those challenges. This is a service-learning course, and student teams will have the opportunity to partner with real partner organizations in a major developing world city to define and execute a project focused on urban development, and the current or potential role of urban agriculture. Service-learning projects will employ primarily the student's analytical skills such as synthesis of existing research findings, interdisciplinary experimental design, quantitative data analysis and visualization, GIS, and qualitative data collection through interviews and textual analysis. Previous coursework in the aforementioned analytical skills is preferred, but not required. Admission is by application.
Same as: EARTHSYS 181, EARTHSYS 281, EESS 181, URBANST 181.

EESS 283. Food Matters: Agriculture in Film. 1 Unit.

Film series presenting historical and contemporary issues dealing with food and agriculture across the globe. Students discuss reactions and thoughts in a round table format. May be repeated for credit.
Same as: EARTHSYS 183, EARTHSYS 283, EESS 183.

EESS 284. Climate and Agriculture. 3-4 Units.

The effects of climate change on global agriculture and food security, and the effects of agriculture on climate change. An overview of different lines of evidence used to measure impacts and adaptations, and to quantify future impacts, risks, and adaptation needs for agro-ecosystems and society. Enrollment limited to 25; priority to juniors, seniors, and graduate students. Prerequisites: ECON 106/206 or permission of instructor.
Same as: EARTHSYS 184, EARTHSYS 284, EESS 184.

EESS 292. Directed Individual Study in Environmental Earth System Science. 1-10 Unit.

Under supervision of an Environmental Earth System Science faculty member on a subject of mutual interest.

EESS 300. Climate studies of terrestrial environments. 3 Units.

This course will consist of a weekly seminar covering topics of interest in Cenozoic climate. The course examines the interactions between the biosphere, atmosphere and geosphere and how these interactions influence climate. The course will cover classic and seminal papers on the controls of the oxygen, hydrogen, and carbon isotopes of the hydrosphere, atmosphere and biosphere and how they are expressed in paleoclimate proxies. Seminar will consist of reading and discussion of these papers. Students will be responsible for presenting papers. Grades will be determined by class participation. (Chamberlain).

EESS 301. Topics in Environmental Earth System Science. 1 Unit.

Current topics, issues, and research related to interactions that link the oceans, atmosphere, land surfaces and freshwater systems. May be repeated for credit.

EESS 305. Climate Change: An Earth Systems Perspective. 2 Units.

A graduate-level, seminar-style class on climate nchange structured around the IPCC¿s AR5. Significant reading load and nweekly talks by a rotating roster of contributing and lead authors from nthe IPCC. The focus will be on the physical science basis, adaptation nand impacts (working groups 1 and 2), with some material drawn from nmitigation (working group 3).

EESS 310. Climate and Energy Seminar. 3 Units.

This course examines the links between climate change policy and other regulation of the energy sector in the U.S. context. In the electricity sector, these policies are likely to be closely interconnected, yet they are often considered in isolation. We will evaluate the impacts of energy, air pollution, and water pollution regulations on US greenhouse gas emissions from the energy sector. We will also examine how state regulatory activities aimed at reducing greenhouse gas emissions in the electricity sector are likely to have co-benefits for air and water pollution.

EESS 318. Global Land Use Change to 2050. 2-3 Units.

An exploration of the fundamental drivers behind long term shifts in the demand for, and supply of, land for agriculture, forestry and environmental uses over the next four decades. Topics include trends in food and bioenergy demand, crop productivity on existing and potential croplands, water and climate constraints, non-extractive uses such as carbon sequestration, and the role of global trade and public policies. Students will lead discussions of weekly readings and perform simple numerical experiments to explore the role of individual drivers of long run global land use.

EESS 322A. Seminar in Hydrogeology. 1 Unit.

Current topics. May be repeated for credit. Autumn Quarter has open enrollment, For Winter Quarter, consent of instructor is required.

EESS 322B. Seminar in Hydrogeology. 1 Unit.

Current topics. May be repeated for credit. Prerequisite: consent of instructor.

EESS 323. Stanford at Sea. 16 Units.

(Graduate students register for 323H.) Five weeks of marine science including oceanography, marine physiology, policy, maritime studies, conservation, and nautical science at Hopkins Marine Station, followed by five weeks at sea aboard a sailing research vessel in the Pacific Ocean. Shore component comprised of three multidisciplinary courses meeting daily and continuing aboard ship. Students develop an independent research project plan while ashore, and carry out the research at sea. In collaboration with the Sea Education Association of Woods Hole, MA. Only 6 units may count towards the Biology major.
Same as: BIOHOPK 182H, BIOHOPK 323H, EARTHSYS 323.

EESS 330. Advanced Topics in Hydrogeology. 1-2 Unit.

Topics: questioning classic explanations of physical processes; coupled physical, chemical, and biological processes affecting heat and solute transport. May be repeated for credit.

EESS 342. Geostatistics. 1-2 Unit.

Classic results and current research. Topics based on interest and timeliness. May be repeated for credit.

EESS 342B. Geostatistics. 1-2 Unit.

Classic results and current research. Topics based on interest and timeliness. May be repeated for credit.

EESS 342C. Geostatistics. 1-2 Unit.

Classic results and current research. Topics based on interest and timeliness. May be repeated for credit.

EESS 363F. Oceanic Fluid Dynamics. 3 Units.

Dynamics of rotating stratified fluids with application to oceanic flows. Topics include: inertia-gravity waves; geostrophic and cyclogeostrophic balance; vorticity and potential vorticity dynamics; quasi-geostrophic motions; planetary and topographic Rossby waves; inertial, symmetric, barotropic and baroclinic instability; Ekman layers; and the frictional spin-down of geostrophic flows. Prerequisite: CEE 262A or a graduate class in fluid mechanics.
Same as: CEE 363F.

EESS 364F. Advanced Topics in Geophysical Fluid Dynamics. 2-3 Units.

A seminar-style class covering the classic papers on the theory of the large-scale ocean circulation. Topics include: wind-driven gyres, mesoscale eddies and geostrophic turbulence, eddy-driven recirculation gyres, homogenization of potential vorticity, the ventilated thermocline, subduction, and the abyssal circulation. Prerequisite: EESS 363F or CEE 363F. Recommended: EESS 246B.
Same as: CEE 364F.

EESS 385. Practical Experience in the Geosciences. 1 Unit.

On-the-job training, that may include summer internship, in applied aspects of the geosciences, and technical, organizational, and communication dimensions. Meets USCIS requirements for F-1 curricular practical training. May be repeated for credit.

EESS 398. Current Topics in Ecosystem Modeling. 1-2 Unit.

EESS 400. Graduate Research. 1-15 Unit.

May be repeated for credit. Prerequisite: consent of instructor.

EESS 801. TGR Project. 0 Units.

EESS 802. TGR Dissertation. 0 Units.